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Abstract

Corrective environmental taxes are typically designed to match the value of marginal dam-
ages. This approach maximizes social welfare when an environmental externality is the only
market imperfection. When multiple imperfections exist, however, knowing the marginal
damages is insufficient for setting an optimal tax: it is also necessary to understand the market
structure and quantify the effects of imperfections. This paper examines second-best carbon
taxation in the US domestic aviation sector and documents novel empirical evidence of the
large distortive effects of market imperfections on the efficiency of carbon taxes. Combining
sufficient statistics and structural modeling approaches, I estimate abatement costs, calculate
the optimal carbon tax under market power and non-environmental taxes, and investigate the
effects of introducing a revenue-neutral carbon tax. I find that the current marginal abatement
cost is $211–$244/ton CO2. Hence, any positive carbon tax would decrease social welfare if the
social cost of carbon (SCC) is smaller than this value. Under a higher SCC of $300/ton CO2,
the optimal carbon tax is $107/ton CO2, thus much lower than the standard Pigouvian tax.
Moreover, attempting to improve policy efficiency with a revenue-neutral carbon tax would
not yield a double dividend. While welfare gains would follow from reducing tax deadweight
loss and market power, price effects would be dampened by markup adjustments, leading to a
net increase in aggregate emissions.

*Email: dcardoso@illinois.edu. I am grateful to Volodymyr Bilotkach, Julien Daubanes, Todd Gerarden, Nathaniel
Hendren, Jonathan Hughes, Catherine Kling, Shanjun Li, Yongjoon Park, Ivan Rudik, and Ruozi Song for their helpful
comments and suggestions. I also thank participants at the AERE, ASSA, CREEA, and EEA conferences, the North-
east Workshop on Energy Policy and Environmental Economics, and seminar participants at Cornell University, Duke
University, Hamilton College, Indiana University, Institute for Policy Integrity, Michigan State University, Norwe-
gian School of Economics, Syracuse University, University of Connecticut, University of Geneva, University of Illinois
Urbana-Champaign, and ZEW.

1

mailto:dcardoso@illinois.edu


1 Introduction

“Levy a tax equal to the marginal external cost” is a foundational policy prescription in the eco-

nomic analysis of externalities. This type of tax, known as Pigouvian taxation, makes agents

internalize the external costs, maximizes social welfare, and leads markets to an efficient equilib-

rium in the absence of other distortions. As such, Pigouvian taxes—and equivalent market-based

instruments—enjoy broad support among economists as a policy to mitigate environmental dam-

ages.

The optimality of a Pigouvian tax, however, hinges on the assumption that the target external-

ity is the only market imperfection. When this assumption holds, optimal environmental taxation

only requires knowledge about marginal damages. But numerous polluting sectors deviate from

perfect markets. For instance, several polluting markets are oligopolies. As Buchanan (1969)

demonstrates, optimal taxes differ from marginal environmental costs when firms have market

power. Furthermore, most sectors are subject to non-Pigouvian distortionary taxes that lower

equilibrium quantities. These taxes decrease related damages and partially substitute a Pigouvian

tax. In those cases, an environmental tax based exclusively on marginal damages can even reduce

welfare when the assumption of otherwise perfect markets does not hold. Therefore, when multi-

ple imperfections exist, estimates of marginal damages are not sufficient for an efficient policy: it

is also necessary to understand the market structure and quantify its imperfections.

This paper combines sufficient statistics and structural modeling approaches to estimate second-

best carbon taxes in a well-known oligopoly: the US domestic aviation sector. Commercial avi-

ation is a notoriously concentrated sector that has proven challenging for climate policy. A rich

literature has documented that airlines have substantial market power as a result of the oligopolis-

tic nature of the sector (e.g., Borenstein, 1989; Ciliberto & Williams, 2010). Adding to market

power distortions, air travel is also subject to non-Pigouvian distortionary taxes. The sector also

generates climate-related externalities, accounting for approximately 3% of global greenhouse gas

emissions and 5% of the radiative forcing leading to climate change (Lee et al., 2009). With limited

regulation, carbon emissions from aviation are projected to continue growing (Owen et al., 2010)

and may account for as much as 22% of global greenhouse gas emissions by 2050 (European Par-

liament, 2015). Despite efforts to curb emissions from international aviation, the scope of policies

has been limited, and large domestic air travel markets have not been addressed. Most notably, the

US—the largest aviation market—has only recently devised climate action plans, albeit primarily
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focused on broad, long-term goals targeting technological advancements (FAA, 2021).

Using data from the US Department of Transportation, this paper estimates sufficient statistics

for welfare changes and structural parameters of a sector model. Based on these estimates, I (i)

derive marginal and non-marginal welfare costs of emission abatement via carbon taxation; (ii)

calculate the second-best carbon tax taking market power and existing taxes as given; and (iii)

examine whether a revenue-neutral carbon tax in place of existing sales taxes can generate welfare

gains.

This paper finds that any positive carbon tax would decrease social welfare if the social cost of

carbon1 (SCC) is equal to its current reference value of $50 per metric ton of CO2. Under a higher

SCC of $300/ton CO2—an upper-bound estimate from Rennert et al. (2022)—the optimal carbon

tax is approximately $107/ton CO2. Thus, the optimal tax level is about a third of the standard

Pigouvian prescription. The striking difference between the optimal tax and the marginal damage

represented by the SCC can be traced to existing market imperfections.

Estimates from the structural model and sufficient statistics indicate that abating one ton of

CO2 by increasing carbon taxes would lead to a loss of $154–185 in private surplus due to markups

and $53–54 due to the sales tax distortions. These substantial distortions accentuate the loss of

private surplus when carbon taxes increase, and further analysis shows that these losses are evenly

split between reductions in consumer and producer surplus. As a result, if emission reductions

are achieved exclusively through demand reduction via taxation, the baseline marginal abatement

cost is between $211 and $244/ton CO2.

Welfare theory suggests that replacing a tax based on prices for one based on the externality

could increase the efficiency of taxation. The current sales tax, set at 7.5% of the fare, partially

substitutes the role of a carbon tax by increasing average ticket prices and reducing demand and

emissions. However, sales taxes can be inefficient instruments because fares are not necessarily

linked to emissions. In this case, a carbon tax could result in the so-called double dividend—lower

emissions and increased welfare by replacing a more distortive tax. I investigate this alternative in

counterfactual analyses that implement a revenue-neutral carbon tax to replace the current sales

tax.

In line with theory, I find that a revenue-neutral carbon tax of about $61/ton CO2 would in-

crease aggregate welfare even under an SCC as high as $300/ton CO2. Surprisingly, however,

1The social cost of carbon indicates the present discounted value of the stream of climate damages from an additional
ton of CO2 emissions.
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the double dividend fails here because this tax substitution would increase aggregate emissions.

Hence, net welfare gains follow from a private surplus increase that exceeds the additional dam-

ages. This result is driven by market power: when a carbon tax shifts the tax burden to more

polluting flights, firms can respond by reducing markups to retain market share. Lower markups

and the removal of the sales tax deadweight increase private surplus. However, markup reduc-

tions also undo part of the effect on prices intended by taxing carbon. As a result, emissions

among the most polluting flights decrease less than in perfect competition, and these reductions

are not enough to offset the total emission increase from the less polluting options.

These findings highlight one of the main challenges for climate policy in the sector: with lim-

ited abatement technologies available in the short run, abating carbon emissions via demand re-

duction instruments has a high cost. Moreover, with existing distortions, attempts to reform tax

instruments to achieve emission targets might backfire. Over a longer horizon, technological ad-

vancements and alternative fuels are more likely reduce the cost of abatement and make emission

targets more feasible. In the past few years, several initiatives have been set in place to incentivize

the development and expansion of sustainable aviation fuels.2 These policies, combined with the

results presented here, suggest that a comprehensive climate policy for the aviation sector should

consider a mix of demand-side and supply-side instruments.

This paper makes four main contributions. First, it provides robust empirical evidence that

adding a carbon tax to a major oligopolistic sector could decrease social welfare for a range of

plausible SCC values. Therefore, this analysis contributes to the understanding of the welfare im-

pacts of environmental policy under imperfect competition. Since the seminal work of Buchanan

(1969) showing how the standard Pigouvian tax can lead to welfare loss in monopoly, a strand

of the literature advanced theoretical models to characterize the interplay of environmental ex-

ternalities and market power (Requate, 2006). However, empirical work on this interaction has

emerged more recently, typically focusing on a single industry. For instance, empirical analyses to

date have documented how existing market power can lead to emission reductions in electricity

(Mansur, 2007) and how environmental regulations can exacerbate market power in cement (Ryan,

2Lohawala, Toman, and Joiner (2024) present a detailed discussion of the potential of sustainable aviation fuels
(SAFs) as well as and current and future policies. Despite showing great promise to steer aviation towards net-zero
goals, SAFs will have limited impact in the short and medium run. Current production pathways cost of 4 to 8 times
more than conventional jet fuels. Moreover, scaling up production might lead to increased competition for limited
feedstock supply capacity. Even if the optimistic targets set by the US SAF Grand Challenge of increasing annual
production from about 16 million in 2022 to 3 billion gallons by 2030 were met, SAFs would supply only about 11% of
the projected domestic fuel demand (DOE, 2021).
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2012). Similarly, market power and incomplete cost pass-through have been shown to reduce the

efficiency of carbon taxes in coal (Preonas, 2024); incomplete cost pass-through has also been doc-

umented in several other carbon-intensive sectors, such as fossil fuels and manufacturing (e.g.,

Lade & Bushnell, 2019; Ganapati et al., 2020; Muehlegger & Sweeney, 2022). Contributing to this

literature, the present paper quantifies the efficiency loss of policy instruments under imperfect

competition and provides a comprehensive welfare analysis to inform optimal policy design.

Second, this work quantifies the increase in abatement costs due to non-environmental mar-

ket distortions and provides empirical evidence that a revenue-neutral carbon tax could lead to

higher emissions. In doing so, this article contributes to the literature on second-best externality

taxation and the interactions between environmental and non-environmental taxes. A significant

part of this literature is concerned with the conditions for a double dividend. Most frequently,

second-best settings have considered general equilibrium effects with distortionary input taxes

(e.g., Bovenberg & Mooij, 1994; Bovenberg & Goulder, 1996; Cremer et al., 1998; Goulder et al.,

1999). Under pre-existing taxation, optimal environmental taxes are frequently smaller than the

marginal damage (Bovenberg & Mooij, 1994; Parry, 1995). Previous studies have also indicated

that distortionary taxes increase the cost of environmental policy (Goulder et al., 1999) and that

monopoly power can intensify this effect (Fullerton & Metcalf, 2002). However, increased costs

can be attenuated by revenue-neutral tax substitution, even when the double dividend fails to

materialize (Goulder, 1998). This paper contributes to this literature by providing empirical evi-

dence that emissions can increase in a differentiated oligopoly even when net welfare gains exist.

Therefore, these results illustrate a possible conflict between carbon taxes and emission targets,

with implications for climate policy.

Third, this paper contributes to the literature on empirical welfare analysis by demonstrating

how sufficient statistics and structural approaches can be combined to assess marginal and non-

marginal effects of environmental policies in imperfect markets. The sufficient statistics approach,

introduced by Chetty (2009), evaluates marginal welfare changes from a policy based on a small

set of key parameters that can be identified through reduced-form estimation. For instance, pre-

vious studies on environmental policies have used sufficient statistics to estimate the efficiency

costs of price instruments (Jacobsen, Knittel, Sallee, & Van Benthem, 2020) and characterize mar-

ket shifts to quantify distributional effects in imperfect markets (Genakos, Grey, & Ritz, 2020).

Determining the optimal tax, however, involves evaluating non-marginal changes and requires

additional structural assumptions (Kleven, 2021). This paper leverages sufficient statistics to as-
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sess the role of non-environmental market distortions and estimate baseline marginal abatement

costs. In doing so, this paper also illustrates how these statistics offer a local consistency check for

predictions of a structural model necessary for evaluating non-marginal changes.

Fourth, this article offers a novel benefit-cost analysis of prospective climate policy for the

US domestic aviation sector. Previous studies have primarily focused on predicting the effects

of hypothetical policies on prices and demand. This literature has examined, for example, the

effects of a carbon taxes of $40 (Brueckner & Abreu, 2017) and $50/ton CO2 (Pagoni & Psaraki-

Kalouptsidi, 2016), cap-and-trade programs (Winchester et al., 2013), and small increases in the

jet fuel tax (Fukui & Miyoshi, 2017). However, to date, studies in this literature have overlooked

welfare consequences and the role of non-environmental market imperfections.

The remainder of this paper is organized as follows. Section 2 summarizes key characteristics

of the US aviation sector and the challenges they present for climate policy. Section 3 introduces

the theoretical framework and derives expressions to characterize welfare changes, market dis-

tortions, and optimal taxes. A model of the US aviation sector is outlined in Section 4. Section

5 describes the data used in this paper, while section 6 explains the estimation procedures and

discusses estimated parameters. The estimation of optimal taxes and the impacts of an aviation

carbon tax are presented in Section 7. Section 8 offers concluding remarks.

2 US aviation and climate change

The US has the largest domestic commercial aviation market in the world. It accounts for ap-

proximately 30% of all passengers carried and 45% of domestic passenger-miles served on do-

mestic flights (IATA, 2019). In growth, the US domestic aviation market is second only to China

(IATA, 2019). After the deregulation of commercial aviation in the late 1970s, the sector has experi-

enced tremendous expansion in service, growing from around 250 billion revenue passenger-miles

(RPM) in the early 1980s to over a trillion RPMs per year in the late 2010s. This section highlights

three aspects of the aviation industry relevant to this paper: market structure, existing taxes, and

carbon emissions.

Sector structure. Since deregulation, the industry has seen changes in its players, with vari-

ous rounds of entry, bankruptcy, and consolidation.3 Airlines can be broadly organized into two

3Borenstein and Rose (2014) present a comprehensive overview of the US aviation industry, including its history,
trends, and unique challenges.
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groups (Belobaba et al., 2015). One group includes the legacy airlines, alluding to the fact that

these firms have operated since the pre-deregulation era. This group currently includes American,

Delta, and United Airlines. Some of the distinguishing features of these players are their exten-

sive service networks with large hubs, more rigid cost structures with higher levels of unioniza-

tion, and bundled higher-quality services (such as meals and in-flight amenities). The other group

is formed by low-cost carriers (LCCs), which follow the “no-frills” business model successfully

implemented by Southwest Airlines. Examples of other airlines in this category are Spirit and Al-

legiant. As the name suggests, LCCs focus on running cost-efficient operations. This involves, for

example, flying point-to-point services from smaller airports instead of maintaining large hubs,

keeping a high aircraft utilization rate, and unbundling passenger services by charging extra fees

for baggage, food, beverages, and other amenities.

In practice, the legacy vs. LCC categorization is more of a conceptual construction than an

accurate description of how airlines operate. The financial success of LCCs has led legacy carriers

to adopt some of the LCC practices. On the opposite end, the quest for diversification has also

led some LCCs, such as JetBlue, to invest in higher service quality. Furthermore, a third group

of airlines can be categorized as regional carriers; these players are either small, independent

companies that run on limited networks or carriers that operate in partnership with larger airlines

to provide connections from hubs to smaller airports—under the brand name of United Express

or American Eagle, for example (Belobaba et al., 2015).

With the small number of airlines and high fixed and entry costs, the aviation industry largely

operates as an oligopoly. Extensive literature has documented evidence of market power in the US

aviation industry. Though a review of this literature is beyond the scope of this brief description,

prior findings present some common themes. For example, studies have found that the existence

of a hub premium is a source of market power (Borenstein, 1989, 1991; Lee & Luengo-Prado,

2005; Lederman, 2007, 2008; Berry & Jia, 2010). Other mechanisms generating and maintaining

market power are tacit collusion (Evans & Kessides, 1994; Ciliberto & Williams, 2014; Aryal et al.,

2022), entry deterrence (Ciliberto & Williams, 2010; Aguirregabiria & Ho, 2012; Ciliberto & Zhang,

2017), and mergers and consolidation (Kim & Singal, 1993). In the opposite direction, increased

competition from LCCs, a trend initially attributed to the “Southwest effect,” has been found to

reduce prices and markups (Morrison, 2001; Goolsbee & Syverson, 2008; Brueckner et al., 2013).
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Taxes and fees. In the US, commercial flights are subject to a sales tax, a fuel tax, and various fees.

The sales tax corresponds to the US Federal Excise Ticket Tax, set at 7.5% of the base fare. This tax

is dedicated to the Airport and Airway Trust Fund (AATF), which most notably helps to fund the

Federal Aviation Administration (FAA, 2020). In addition, jet fuel used for commercial aviation is

subject to a federal tax of 4.3 cents/gallon, also appropriated by the AATF, plus a 0.1 cents/gallon

fee, appropriated by the Leaking Underground Storage Tank Trust Fund. There are also three fees

for domestic flights in the US: (i) the Federal Security Surcharge, at $11.20 per domestic round-

trip itinerary; (ii) the Federal Flight Segment Tax, which charges $4.20 per domestic segment;

and (iii) Passenger Facility Charges, costing on average $4.50 per departing airport. Notably, the

model proposed in this paper captures these taxes and fees, as they have implications for pricing

behavior.

Emissions. Aviation accounts for 2–3% of global CO2 annual emissions (Owen et al., 2010) and

is one of the sectors with the fastest growth in emissions. Between 1990 and 2016, greenhouse gas

emissions from aviation grew by 98% (FCCC, 2018). These emissions are projected to grow by 200–

360% in the first half of the 21st century (Owen et al., 2010). With the fast expansion of air travel

and limited abatement alternatives, the sector lags behind other industries in decarbonization. As

a result, aviation may account for up to 22% of total CO2 emissions by 2050 (European Parliament,

2015).

Aviation’s total contribution to climate change is larger than its share of CO2 emissions, ac-

counting for as much as 5% of the radiative forcing leading to global warming (Lee et al., 2009).

Jet fuel burn releases other components that affect heat transfer in the atmosphere, including water

vapor, nitrous oxides, soot, and contrails. Though some components favor atmospheric cooling,

such as aerosols and methane reduction due to nitrous oxides, the net effect of jet fuel burn pro-

duces warming above the individual contribution of CO2 (Lee et al., 2009).

3 Theoretical framework

In this paper, a carbon tax is considered optimal in a second-best sense: it maximizes social welfare

taking market power and distortionary, revenue-raising taxes as given. This section introduces a

framework for evaluating the welfare effects of a carbon tax and uses that framework to charac-

terize the optimal tax and the role of non-environmental distortions. Throughout the paper, all
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analyses are made in partial equilibrium, focusing only on the markets that generate the environ-

mental externality of interest.

3.1 An illustration of welfare effects

Before proceeding with a formal model, let us present a simplified case that graphically illustrates

the intuition of the mechanisms at play. Consider initially a single-product monopolist, as in

Buchanan (1969). This single product has a constant marginal cost of production MC, and its

consumption generates a marginal externality ϕ. Moreover, the demand function for this good is

linear.

Panel (a) in Figure 1 extends the original diagram in Buchanan (1969) by adding a sales tax,

which creates a wedge between the inverse demand curve (D) and the price received by the

monopolist (P̃ ). Under perfect competition, the competitive equilibrium price (Pc) equals the

marginal private cost (MC). Then, the externality generates a dead-weight loss (area a), which

could be corrected by levying a per-unit tax equal to ϕ; i.e., it would achieve the standard Pigou-

vian setting at the efficient equilibrium (Q∗
c , P

∗
c ).

Figure 1: Pigouvian and optimal taxes with multiple market distortions in a polluting monopoly.

Q′
mt

Qmt Q∗
c
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(a) Welfare-decreasing Pigouvian tax
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P ′
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MCMCMC

MC + ϕMC + ϕMC + ϕ
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f
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(b) Welfare-improving Pigouvian tax

Notes: D is demand, P̃ is price received (before taxes), MR is marginal revenue, MC is marginal private cost, and ϕ is
marginal damage from pollution. Area a is welfare gain from a Pigouvian tax under perfect competition and d under
imperfect competition. Areas b and e are welfare losses from monopoly power. Areas c and f are welfare losses from
distortionary taxation.

However, when the firm is a monopolist and a sales tax exists, the initial market equilibrium
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is at (Qmt, Pmt). Introducing a tax ϕ leads the monopolist to decrease supply even further, to

Q′
mt, with a higher equilibrium price P ′

mt. As a result, the interaction between the externality tax

and other market distortions decreases welfare for two reasons. First, market power leads to the

reduction represented by area b; this is the welfare loss identified by Buchanan (1969). Second,

sales tax distortion drives the loss represented by area c. Hence, for the case illustrated in panel

(a) of Figure 1, the standard Pigouvian tax would decrease social welfare. In fact, since Qmt < Q∗
c ,

any positive externality tax would lead to a welfare loss.

The case represented in panel (a) of Figure 1 is a particular one: the externality is small rel-

ative to other distortions. Panel (b) illustrates a different scenario, where the Pigouvian tax still

improves welfare, but not efficiently. In this case, the Pigouvian tax corrects the externality and

increases welfare proportionally to the area d. However, this tax leads the market equilibrium to

Q′
mt, below the efficient level. As a result, there are welfare losses corresponding to areas e and f

(analogous to b and c in Figure 1). The net effect on welfare can be positive as long as the gains

from the corrected externality exceed losses from the other distortions.

When the externality is large relative to other distortions, an efficient alternative to the Pigou-

vian tax is a smaller tax τ∗. This optimal tax leads the monopolist to supply at the efficient market

outcome, Q∗
c . Hence, in this particular case, a social planner could efficiently correct the environ-

mental externality under market power and sales tax distortions.

3.2 Social welfare in a taxed oligopoly

The intuitive results obtained from the graphical analysis above can be formalized. Consider a

market m with Km + 1 differentiated goods indexed by k. Consumption of goods k = 1, . . . ,Km

generates carbon emissions ek per unit consumed. Index k = 0 represents a composite consump-

tion good capturing the “outside option.” This composite good has a unitary price and does not

generate consumption externalities. Furthermore, no emission abatement technologies exist in the

short run, so all abatement is achieved through consumption reduction; this assumption is relaxed

in Appendix F, which derives an extension of the model to allow for input substitution.

In this setting, social welfare comprises four components: consumer surplus, firms’ operating

profits, tax revenue,4 and environmental damages. Throughout the paper, short-run private surplus

(SRPS) refers to the unweighted sum of consumer surplus, operating profits, and tax revenue.

4I make no assumptions about how firm profits are distributed to individuals or how tax revenues are recycled, for
which reason these elements are kept in separate accounts.
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Consumer surplus. There are Nm identical consumers with quasi-linear utility

U (x0, x1, . . . , xKm) = αx0 +
∑Km

k=1 uk (xk), where xk represents the quantities consumed and α

determines the marginal utility of income. Under standard assumptions about the utility function,

utility maximization implicitly defines demands for each good as x∗k = xk (Pm, y), where Pm =

(1, p1, . . . , pk) is the vector of prices and y is the consumer’s income level. Let qk (τ) and pk (τ)

represent the equilibrium quantity and price with emissions tax τ . Then, the aggregate money-

metric consumer surplus in this market can be represented as

CSm =
Nm

α

Km∑
k=1

uk

(
qk (τ)

Nm

)
−

Km∑
k=1

pk (τ) qk (τ) +Nmy. (1)

Operating profits. There are Jm firms supplying Km emission-generating goods; the outside op-

tion is competitively supplied and can be abstracted from profit considerations. Each product k is

subject to a uniform sales tax r and a product-specific lump-sum fee ιk. Thus, pk = (1 + r) p̃k + ιk,

where p̃k is the pre-tax price received by the firm. In this framework, fees ιk are understood as

infrastructure costs paid by the consumer. In aviation, these costs refer to airport and security ser-

vices provided by entities other than the airlines. These fees are not taxes but must be included in

the model because they create a wedge between the ticket price paid and the amount received by

airlines, thus affecting pricing behavior. Let p̃k (τ) represent equilibrium pre-tax prices and ck rep-

resent the respective marginal costs of production, here assumed constant. Then, total operating

profits5 can be written as

Πm (τ) =

Km∑
k=1

[p̃k (τ)− ck − τek] qk (τ) . (2)

Tax revenue. There are two sources of tax revenue: a sales tax r and an emissions tax τ . Total tax

revenue, then, is given by

Tm (τ) = τ

Km∑
k=1

qk (τ) ek + r

Km∑
k=1

qk (τ) p̃k (τ) . (3)

Environmental damage. Each unit of emission produces a constant environmental damage ϕ.

For carbon emissions, these damages can be understood as the present value of the stream of

future damages, i.e., the social cost of carbon. Under this setting, environmental damages in this

5These are, in fact, variable operating profits. Entry and exit decisions driven by tax changes are not considered in
this short-run analysis, for which reason I omit fixed costs.
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market are given by

Φm (τ) = ϕ

Km∑
k=1

qk (τ) ek. (4)

Combining all four components yields the expression for social welfare in a market:

Wm (τ) =

Km∑
k=1

{
Nm

α
uk

(
qk (τ)

Nm

)
− [ιk + ck + ϕek] qk (τ)

}
+Nmy. (5)

As usual, tax revenues are transfers that cancel out. Thus, social welfare is a function of the utility

derived from each good and the private and external costs of providing these goods. Note that

the rightmost term in (5) is constant and does not affect the assessment of welfare changes.

3.3 Marginal welfare effects

Assuming that a marginal change in taxes has negligible effects on operating costs and markups,

differentiating (5) with respect to τ gives the expression for marginal welfare change:

dWm

dτ
=

Km∑
k=1

[rp̃k + µk + (τ − ϕ) ek]
dqk
dτ

. (6)

The terms within square brackets demonstrate how all three market imperfections affect welfare.

In particular, the terms referring to sales tax and markup distortions are analogous to the usual

Harberger triangle terms (Kleven, 2021). For these terms, welfare losses are equal to the “mechan-

ical variation” in tax revenue and operating profit (i.e., holding prices constant). The third term

inside the square brackets refers to the environmental externality and its correction mechanism.

The standard Pigouvian taxation arises as a special case in (6) when there is no sales tax nor

market power (r = µk = 0). The usual prescription applies in this case: setting the environmental

tax to marginal damages (τ = ϕ) maximizes social welfare (provided that second-order conditions

are satisfied). In contrast, if τ = ϕ but other distortions exist, then

dWm

dτ

∣∣∣∣
τ=ϕ

=

Km∑
k=1

[rp̃k + µk]
dqk
dτ

,

which is typically negative because dqk
dτ < 0 for most goods. This demonstrates that, when other

distortions exist, the second-best tax is smaller than the standard Pigouvian tax.
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3.4 Marginal abatement cost and second-best carbon tax

Combining the marginal change in SRPS and aggregate emissions (
∑Km

k=1 ek
dqk
dτ ), the marginal

abatement cost (MAC) is given by

MAC (τ) ≡ τ +

∑Km
k=1 [rp̃k + µk]

dqk
dτ∑Km

k=1 ek
dqk
dτ

. (7)

Abatement costs in this framework refer to the private welfare losses following emission reduc-

tions induced by environmental tax τ .6 Equation (6) can be used to characterize the optimal envi-

ronmental tax with other distortions. The first-order condition for the optimal tax τ∗ yields

τ∗ = ϕ−

{∑Km
k=1 µk

dqk
dτ∑Km

k=1 ek
dqk
dτ

+

∑Km
k=1 rp̃k

dqk
dτ∑Km

k=1 ek
dqk
dτ

}
︸ ︷︷ ︸

Tax wedges

, (8)

thus making explicit how non-environmental distortions create a wedge between the optimal en-

vironmental tax and marginal damages. In particular, this wedge is determined by the marginal

changes in each distortion relative to the marginal change in emissions. Throughout the text, I

refer to these two components as tax wedges, measured in $/ton CO2. Combining (7) and (8), a

standard result follows: MAC (τ∗) = ϕ. That is, the MAC at the optimal emission level is equal to

marginal damage—even though the optimal tax rate is smaller than the marginal damage.7

3.5 Tax substitution and the double dividend

The existence of a distortive sales tax creates the possibility of a double dividend: substituting

the sales tax for an externality tax could both decrease emissions and improve welfare. In this

case, it is assumed that the current level of tax revenues cannot be reduced, as it is used to fund

necessary government expenditures. This implies a marginal change in the sales tax rate (dr) for

every change in the externality tax (dτ ) such that the total tax revenue is unchanged: dT = 0.

6Here, emission intensity ek is held fixed, so reductions in emissions are obtained exclusively via reduced consump-
tion. Appendix F derives the MAC for the case of production with the possibility of substitution toward cleaner inputs.

7This characterization also assumes a uniform tax. In theory, a product-specific tax schedule would weakly improve
the outcome of this market. Nevertheless, it is difficult in practice to implement taxes that are specific to each firm or
product, especially for input taxes such as the one studied in this paper.
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Differentiating (3) for all markets yields

dr

dτ
= − (1 + r)

∑
k ek

[
qk + (τek + rp̃k)

dqk
dpk

]
∑

k p̃k

[
qk + (τek + rp̃k)

dqk
dpk

] . (9)

This expression shows that the marginal rate of substitution between both taxes depends on the

ratio of aggregate emissions and revenue, both weighted by the marginally adjusted demands. To

examine whether the double dividend materializes, we can assess marginal changes in welfare

(equation 6) and emissions (dE =
∑

k ek
dqk
dτ ). In this scenario, however, raising τ has two effects:

the direct effect of a higher emissions tax and the indirect effect of a lower sales tax. Under the

assumptions above, it follows that

dqk
dτ

=
∂qk
∂τ

+
∂qk
∂r

dr

dτ
=

[
(1 + r) ek + p̃k

dr

dτ

]
dqk
dpk

. (10)

Therefore, whether the demand for each product increases or not depends on the relation between

emission intensity and pre-tax prices. Plugging (9) into (10), we have

dqk
dτ

≤ 0 ⇔ rp̃k
ek

≤

∑
j rp̃j

[
qj + (τej + rp̃j)

dqj
dpj

]
∑

j ej

[
qjk + (τej + rp̃j)

dqj
dpj

] . (11)

Here, rp̃k
ek

is the carbon tax implied by the sales tax paid. This expression shows that demand de-

creases for products with an implied tax above the average implied tax weighted by marginally-

adjusted quantities. Since a product’s price is not necessarily proportional to its marginal surplus

and emissions, we cannot ascertain a priori the direction of the effects of a tax substitution. There-

fore, changes in welfare and emissions might go either way, depending on the relative weights of

products. In other words, whether the double dividend holds is an empirical question.

4 A model of commercial aviation

Marginal welfare analyses can shed light on the effects of small changes in the jet fuel tax. These

effects can be approximated using a sufficient statistics approach, as described in section 6.1. To

estimate the optimal tax, however, it is necessary to evaluate non-marginal tax changes—this is

where the sufficient statistics approach proves limited (Kleven, 2021). Non-marginal changes can

be estimated by parameterizing the market equilibrium with structural modeling. In this section,
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I outline a model for US domestic aviation. This model builds on previous studies on the aviation

sector, such as Berry et al. (2006), Berry and Jia (2010), Aguirregabiria and Ho (2012), and Pagoni

and Psaraki-Kalouptsidi (2016).

4.1 Definitions

In this model, time is discrete, and each period represents a quarter. A location is a city or metropoli-

tan area with one or more airports. A market, indexed by m, is a directional pair of locations (of the

form origin → destination), as in Berry et al. (2006) and Aguirregabiria and Ho (2012).8 A segment

is an ordered pair between two airports. A route r is a sequence of up to four segments forming

a round trip. Routes are represented by a four-tuple (ao, ac1, ad, ac2) of airports: the origin, the

outbound connection (if any), the destination, and the inbound connection (if any).9

A product in this industry is a route r operated by airline i at period t. For simplicity of notation,

let k = (r, i, t) index products. Let K represent the set of available products, using subscripts to

indicate partitions. For example, Kmt is the set of products in market m at time t, while Kimt

contains only airline i’s products in Kmt.

4.2 Consumers

There are Nm consumers in market m. At each period, consumers decide whether to purchase at

most one of the products available in this market. For consumer n, purchasing product k yields

utility as follows

unk = XD
k βD − αpk + ξk︸ ︷︷ ︸

Vk

+νn (λ) + λϵnk,

where XD
k is a vector of observed characteristics for product k, pk is the ticket price, and ξk rep-

resents unobserved (in the data) product characteristics; α, λ, and βD are model parameters. To

simplify notation, Vk ≡ XD
k βD − αpk + ξk represents the average consumer surplus for product k.

The average surplus for the choice of not purchasing a product, indexed by k = 0, is normalized

to zero.

8Pagoni and Psaraki-Kalouptsidi (2016) have a similar approach, but define locations as a cluster of airports within
a radius. In contrast, other studies have defined markets as directional airport pairs (e.g. Borenstein, 1989; Ciliberto
& Tamer, 2009; Berry & Jia, 2010). In this paper, markets are defined over metro areas to allow the model to capture
competition between flights departing from airports in close proximity.

9This model does not consider flights with disjoint segments or with more than one connection each way. In the
data used for estimation, these excluded flights correspond to less than 3% of all domestic enplanements.
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Consumer-specific tastes are represented by the additive error term νn (λ)+λϵnk, which yields

the nested logit discrete choice model (McFadden, 1978). All flights are grouped in a single nest,

denoted by g. The outside option is the single choice available in a separate nest.10 In this spec-

ification, νn (λ) is constant across all products and accounts for the correlation of tastes across

flights. The term ϵnk represents the consumer-specific taste for product k. The distribution of the

error term is determined by parameter λ ∈ [0, 1]. When λ = 1, there is no correlation of random

tastes across flights, and the model becomes the standard logit model. When λ approaches 0, the

correlation of random tastes goes to 1.

Consumers choose the product that yields the highest utility. Assuming idiosyncratic tastes

are distributed Type I Extreme Value, we obtain the probability of a consumer choosing product

k. In equilibrium, this probability corresponds to the expected market share of the product, sk:

sk = Pr (unk ≥ unj , ∀j ∈ {0,Kmt}) =
exp (Vk/λ)

D1−λ
g

(
1 +Dλ

g

) , (12)

where Dg ≡
∑

j exp (Vj/λ) is the expected utility of purchasing a product in nest g. Under the

nested logit specification, the expected consumer surplus in market m at period t is given by

CSmt =
1

α
ln
(
1 +Dλ

g

)
+ κ, (13)

where κ is a constant term that is eliminated when evaluating welfare changes (Train, 2009).

4.3 Airlines

In each period and market, airlines maximize operating profits by setting prices for each route

they operate in that market. When setting prices, airlines take as given a vector of exogenous

demand, cost variables, and the set of routes they operate. Defining the set of routes as given has

an important implication for this paper, as it limits all analyses to short-run effects only.11

Ticket prices paid by consumers include a sales tax (r) and product-specific fees (ιk). These

10As discussed in section 7, the carbon tax here examined induces rather homogeneous tax changes in the same
market because emissions per passenger vary substantially more across than within markets. For this reason, the
critical substitution is among nests—all flights vs. not flying—, for which reason this parsimonious demand model
adequately captures the main mechanism in a transparent manner. Appendix B.2 considers two alternative nesting
specifications used in the literature and shows that they result in coefficient that violate economic theory.

11Over a longer horizon, airlines make plans that affect their networks and the markets they serve. Beyond dy-
namic profit maximization, these decisions take into account strategic considerations and numerous technical and non-
technical constraints (Belobaba et al., 2015). Modeling airline decisions to assess long-term network changes requires a
substantially more complex model, for which reason long-run effects are left outside the scope of this paper.
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fees represent the costs of infrastructure services. Taxes and fees create a wedge between the

ticket price pk and the price received by the airline p̃k (see section 2 for an overview of these

charges).12 The pre-tax price vector chosen by an airline, P̃imt = (p̃k1 , p̃k2 , . . . , p̃kn), maximizes

Πimt =
∑

k∈Kimt
(p̃k − ck) sk. The marginal cost per available seat is given by ck = c̃k+(wt + τ) fk,

where c̃k is the constant marginal cost excluding fuel, wk is the jet fuel cost per gallon, and fk is

the volumetric fuel consumption. The first-order optimality condition for each product k is given

by

sk +
∑

j∈Kimt

(p̃j − c̃j − (wj + τ) fj)
∂sj
∂p̃k

= 0. (14)

The resulting pre-tax price and share vectors, P̃mt and Smt, satisfy a Nash-Bertrand equilib-

rium. Stacking all first-order conditions from (14), the market equilibrium is a solution to the

system of equations

µmt ≡ P̃mt −Cmt = −J−1
mtSmt, (15)

where µmt is the vector of operating markups, Cmt is the vector of marginal operating costs,

and Jmt is the Jacobian matrix with partial derivatives of quantities with respect to prices, multi-

plied element-wise by an indicator matrix of product ownership (that is, cell ij is equal to 1 if the

products i and j are offered by the same airline and 0 otherwise).13

In this paper, the aviation carbon tax is implemented as a uniform volumetric tax on jet fuel.

Even though isomorphic alternatives exist, such as tradable emission permits and taxes on air

travel tickets, I focus on a jet fuel tax for three practical reasons. First, jet fuel is a homogeneous

commodity, and jet fuel burn is directly associated with carbon emissions, so a volumetric tax

provides a close approximation of the carbon externality. Second, jet fuel is a single-use com-

modity with limited leakage potential in domestic markets.14 Third, jet fuel is already taxed in

the US; hence, this carbon tax builds on an existing tax structure, which lowers the institutional

requirements for its implementation.

12Prior literature has largely overlooked the role of taxes and fees in this sector. Nevertheless, most studies were
interested in structural characteristics, such as hub premia (Borenstein, 1989, 1991; Ciliberto & Williams, 2010), or large
sector shocks, such as mergers (Ciliberto & Tamer, 2009; Aguirregabiria & Ho, 2012), for which these wedges are likely
inconsequential. For smaller changes in costs, as the ones considered in the present paper, modeling taxes and fees is
essential for better capturing pricing decisions.

13Appendix A.3 presents details on how to construct this matrix and solve equilibria given by equation (15).
14Though carrying excess fuel from abroad on international flights may be possible, the additional weight increases

the fuel burn rate, limiting the economic feasibility of this strategy.
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5 Data

Data sources. The data set used in this paper combines seven data sources from four providers.

US aviation data are sourced from the Bureau of Transportation Statistics (BTS) of the US De-

partment of Transportation (BTS, 2018). I query four BTS databases in this paper. First, the Origin

and Destination Survey (DB1B) provides quarterly data on domestic air travel—including origins,

destinations, connections, and ticket prices—based on a 10% sample of all tickets. Second, Table

T-100 of the Form 41 Traffic Database contains monthly data on air travel operations by segment,

aircraft, and airline. From this database, I collect the number of available seats, passengers trans-

ported, and ramp-to-ramp time by segment, aircraft model, and airline; I also collect the use share

of each aircraft model by segment and airline. Third, I gather data on the number of departures

and delays by segment and airline from the On-Time Performance Database. Fourth, I collect ag-

gregate operating revenues and costs by airline and quarter from the Form 41 Financial Database,

Schedule P-1.2.

Average fuel burn by aircraft model and stage length (i.e., flight segment distance) are collected

from the International Civil Aviation Organization’s carbon emissions calculator documentation

(ICAO, 2018). Jet fuel prices come from the US Energy Information Administration (EIA, 2018); I

collect monthly prices of sales to end users by region. Finally, city and metropolitan area popula-

tions are collected from the US Bureau of Economic Analysis’ Regional Economic Accounts (BEA,

2018).15

Sample criteria. The sample used in this analysis includes the four quarters of 2018. The data

set covers all 73 cities or metropolitan areas in the contiguous US with at least 50,000 passengers

surveyed in 2018, which jointly account for 92% of all domestic traffic. These locations include a

total of 98 airports.

Following the data reliability criteria adopted in the literature (Berry & Jia, 2010; Aguirre-

gabiria & Ho, 2012; Pagoni & Psaraki-Kalouptsidi, 2016), itineraries in the DB1B data are excluded

if any of the following conditions apply: (i) is operated by a non-US airline; (ii) is not a round trip;

(iii) has more than one stop in either direction; (iv) has fare credibility issues flagged by the BTS;

(v) has extreme fares (below $50 or above $3,000); or (vi) has fewer than 3 tickets surveyed in a

quarter.

15Additional details on the construction of the data set are presented in Appendix C.

18



Itineraries selected from the DB1B are assigned to the reporting airline, which is the same as the

operating and ticketing airlines in the majority of the cases. Moreover, small and regional carriers

with exclusive service for or acquired by another airline are grouped with their controlling airline.

Covariates. The resulting data set has 267,967 observations, each representing one product. These

products are offered by 10 airline groups in 5,018 markets. Table 1 presents summary statistics for

the covariates used in this analysis. Some covariates require additional details. Shares are calcu-

lated based on market size, which is defined as the geometric mean of the origin and destination

populations—as in Berry and Jia (2010) and Pagoni and Psaraki-Kalouptsidi (2016). Passengers is

the number of passengers for a product surveyed in DB1B multiplied by 10 (the survey weight).

Market distance is the great circle distance between the origin and destination airports. Connection

extra distance is the travel distance added by having connections; it is calculated as the difference

between total travel distance and twice the market distance. Departures per week is assigned to the

minimum number of departures across each segment in a route. Delayed flights indicates the per-

cent of departures in the previous quarter with delays above 15 minutes. Destinations from origin

indicates the number of destinations an airline serves from the origin airport. Total ramp-to-ramp

time sums the time taken in each segment of a route.

Seven covariates are used as excluded instruments for estimation, as explained in section 6.

This set of instruments was chosen based on previous studies on the aviation sector (especially

Berry et al., 2006; Berry & Jia, 2010; Aguirregabiria & Ho, 2012; Pagoni & Psaraki-Kalouptsidi,

2016). Five of these instruments measure the degree of competition: the number of airlines in

market, the number of rivals’ products in market, the percentage of those rivals’ products that are

nonstop flights, and the number of legacy and low-cost potential entrants. Similar to Goolsbee

and Syverson (2008), potential entrants are identified as airlines currently not offering flights in a

market but operating in the origin or destination cities. Complementary segment density indicates

the sum of passengers from other markets who are transported on each segment of a route; this

variable is a measure of the scale of operations along a route. Finally, fuel expenditure is the sum of

fuel consumption per available seat along each segment, multiplied by the respective fuel price.16

16This covariate accounts for the length of each segment, as well as fuel efficiency and use share of each aircraft model
in each segment of a route. Jet fuel prices are assigned based on the departing airport in each segment. See Appendix
C for details.

19



Table 1: Summary statistics.

Mean St. Dev. Min Median Max

Share (%) 0.01 0.06 0.0002 0.002 2.04
Share within nest (%) 7.37 15.41 0.01 1.41 100.00
Passengers 509.25 2,261.27 30 60 62,640
Market Size (×10−6) 3.47 2.40 0.43 2.76 16.02
Price ($) 479.06 157.41 56.97 465.33 2,041.33
Number of stops 1.60 0.64 0 2 2
Market distance (miles) 1,371.16 640.40 67.13 1,256.22 2,724.08
Connection extra distance (miles) 273.36 295.94 0 181.0 2,993
Departures per week 15.85 13.54 0.08 13.00 145.69
Delayed flights (%) 17.28 5.77 0.00 16.88 100.00
Destinations from origin 25.09 19.40 1 18 84
Airlines in market 5.38 1.48 1 5 9
Rivals’ products in market 57.34 69.44 0 34 604
Rivals’ % of nonstop flights 5.00 9.44 0.00 2.53 100.00
Potential legacy entrants 0.05 0.25 0 0 3
Potential LCC entrants 3.01 1.06 0 3 5
Compl. segment density (×10−3) 48.69 28.42 0.02 44.25 256.40
Fuel expenditure ($/avail. seat) 97.46 31.77 6.44 94.93 276.49
Total ramp-to-ramp time (h) 8.36 2.75 1.50 8.03 18.40

Observations (products) 267,967
Routes 103,720
Time periods (quarters) 4
Airlines 10
Markets 5,018
Cities or metropolitan areas 73
Airports 98

6 Empirical approach and estimation

This paper combines two approaches to assess the potential impact of a carbon tax on aviation.

First, using estimated sufficient statistics, I evaluate marginal changes to prices, quantities, and

welfare following a small incremental change in the current jet fuel tax. As outlined in Section 3,

these marginal changes measure the relative size of market power and tax distortions. Without

requiring extensive structural assumptions, sufficient statistics can indicate when an increase in

the jet fuel tax is welfare-improving. This first approach, however, has limited use for deriving

optimal taxes (Kleven, 2021). To calculate the optimal tax, the second approach relies on estimated
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structural parameters to characterize non-marginal changes to market equilibria. Specifically, I

simulate counterfactual equilibria for various carbon tax levels to search for the optimal level and

analyze its components. In this section, I describe the methods used to estimate parameters and

present the estimation results.

6.1 Sufficient statistics

The right-hand side of equation (6) shows two types of terms that are not directly observed in the

data: product-specific markups (µk) and marginal quantity changes (dqkdτ ). These product-specific

terms cannot be directly estimated because there is no publicly available data on product-level

costs to inform markup calculations. To address this limitation, I focus instead on marginal effects

aggregated across products and markets.

For markup data, I use airline average operating revenue and costs per available seat-mile

(ASM). These system averages, calculated using Form 41 Financial data, are widely used in the

aviation sector to analyze airline performance. Average markups per airline are shown in Table

4. Since these metrics are relative to travel distance, markups vary across flights from the same

airline.

Estimating marginal changes in equilibrium outcomes requires further assumptions. First, I

assume that a small increase in the fuel tax affects only the fuel price paid by airlines. Therefore,

changes to markup, non-fuel costs, and average fuel intensity are negligible following a small

fuel tax increment. Under these assumptions, marginal increments in fuel costs have complete

pass-through, and the marginal tax shock can be represented as

dpk
dτ

=
dpk
dFk

dFk

dτ
= ηk

pk
wk

, (16)

where Fk = (wk + τ) fk is the fuel expenditure per available seat (other variables are defined in

section 4.3) and ηk ≡ ∂ ln pk
∂ lnFk

is the pass-through elasticity of fuel costs to ticket prices. In equilib-

rium, changes in quantities are functions of the vector of all price changes, and can be expressed

as
dqk
dτ

=
∑

j∈Kmt

∂qk
∂pj

dpj
dτ

= qk
∑

j∈Kmt

εkj
ηj
wj

, (17)

where εkj is the elasticity of demand for product k with respect to the price of product j.

Estimating εkj for every pair of products in each market is infeasible with the data set at hand.
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Instead, I rely on an average price elasticity of aggregate demand for flights in a market (Qmt).

This approach further assumes that small changes in the fuel tax have negligible effects on the

relative market shares. Thus, quantities change at the same proportion: dqk = sk|gdQmt. Flights in

a market are treated as a composite product Qmt =
∑

k∈Kmt
qk, with average prices (pmt), fuel use

(fmt), and markups (µmt) weighted by market shares (sk|g). Changes in aggregate quantities can

then be expressed as17

dQmt

dτ
= ε

ηmt

wmt
Qmt, (18)

where ε = ∂ lnQmt

∂ ln pmt
is the elasticity of market-aggregate demand with respect to the market-average

ticket price and ηmt =
∂ ln pmt

∂ ln τ is the market-specific average fuel cost pass-through elasticity.

Estimation and identification. In this formulation, ε and ηmt are the sufficient statistics to be

estimated.18 The elasticity of aggregate demand is estimated in a reduced-form approach with the

following equation

lnQmt = ε ln pmt + β(ε)Xmt + γ(ε)m + γ
(ε)
t + ν

(ε)
mt , (19)

where Xmt is a vector of time-varying, market average product characteristics, γ(ε)m and γ
(ε)
t repre-

sent fixed effects for non-directional city pairs and quarters; ν(ε)mt is an idiosyncratic demand shock.

These fixed effects capture demand components related characteristics of the endpoint locations

and seasonality.

As usual in demand estimation, market price pmt is potentially endogenous. To address this

source of bias, I construct instruments based on the aviation literature (e.g., Berry et al., 2006; Pag-

oni & Psaraki-Kalouptsidi, 2016) that capture variations in competition and costs. Competition-

shifter instruments include the number of potential legacy entrants and the number of potential

low-cost entrants. The cost-shifting instrument is the average fuel expenditure per available seat.

The identification mechanism relies on the assumption that consumer decisions are not based on

the threat of potential airline competitors or changes in fuel costs, except through the effect of

these mechanisms on prices.

17See Appendices A.1 and A.2 for details on the derivation of sufficient statistics and how they are used to calculate
marginal welfare changes.

18With a focus on public finance, Adachi and Fabinger (2022) derive sufficient statistics for the welfare effects of an
ad valorem tax under in a general model of imperfect competition. The two sufficient statistics in that setting are tax
incidence and the marginal value of public funds, which are functions of pass-through rates and demand elasticities.
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Market-specific fuel cost pass-through elasticities (ηmt) are calculated directly from the data.

Under complete marginal pass-through, this elasticity is equal to the ratio of fuel cost share to

ticket price and can be calculated using observed variables: ηmt = (1 + r)Fmt/pmt.

Estimation results. Table 2 shows the results of estimating equation (19) with Ordinary Least

Squares (OLS) and Two-Stage Least Squares (2SLS). While results from both estimators indicate

negative elasticities, 2SLS estimates are larger in absolute value and in line with the literature. For

a comparison, Berry and Jia (2010)—one of the few papers reporting aggregate price elasticities—

find that these elasticities have been increasing in absolute value over time, reflecting structural

and demand changes, including quality of service and consumer behavior. Based on the estimated

structural parameters of an industry model, they calculate a sector-aggregate elasticity of −1.55

for 1999 and −1.67 for 2006. The demand elasticity here estimate is about −1.80, thus larger in

absolute value than those reported in Berry and Jia (2010). Part of the difference in estimates can

be attributed to a continuation of the trends identified in that paper, although the difference is

relatively small.

6.2 Structural parameters

Demand specification. Manipulating equation (12), we obtain the estimating equation for the

nested logit demand (Berry, 1994)

ln sk − ln s0 = XD
k βD − αpk + (1− λ) ln sk|g + ξk, (20)

from which parameters βD, α, and λ are estimated. Vector XD
k includes the following observed

product characteristics: (i) service frequency in departures per week, (ii) number of stops, (iii)

market distance (i.e., between endpoint cities) and its square, (iv) travel distance added due to

connections and its square, (v) percent of delayed departures in the previous quarter, (vi) number

of destinations offered by airline from the origin city, and (vii) fixed effects for airline, origin-by-

quarter, and destination-by-quarter.

Supply specification. Using estimated parameters α̂ and λ̂, observed prices, and observed mar-

ket shares, we can calculate predicted marginal operating costs by rewriting equation (15) as

Ĉmt = P̃mt + Ĵ−1
mtSmt. These predicted costs are then used to estimate the supply side of the

model.
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Table 2: Results for the estimation of sufficient statistics.

OLS 2SLS, 2nd stage 1st stage
ln(Passengers) ln(Passengers) ln(Price)

ln(Price) [ε] −0.472 −1.797
(0.055) (0.136)

Products in market 0.015 0.015 0.0004
(0.001) (0.001) (0.0001)

% of nonstop flights −0.059 −0.246 −0.054
(0.146) (0.205) (0.061)

Instruments
log(Fuel expenditure) 0.751

(0.043)
Potential legacy entrants 0.009

(0.003)
Potential LCC entrants −0.012

(0.007)
Fixed effects
City pair Yes Yes Yes
Quarter Yes Yes Yes

Observations 19,750 19,750 19,750
R2 0.963 0.959 0.921
F-statistic 79.2

Notes: Standard errors, shown in parentheses, are clustered by non-directional
city pairs (markets in opposite directions are clustered together).

Understanding the cost structure of commercial aviation is critical for the correct specifica-

tion of the supply-side equation. I present next a brief overview of this structure, as described in

Belobaba et al. (2015). Flight operating costs can be mapped into five categories based on their

respective unit of variation. First, there are costs per block hour. This category includes all aircraft

operating costs that are directly proportional to the time an airplane is used; it also includes pas-

senger service costs, such as flight attendant wages, entertainment, and food, which are propor-

tional to the duration of a flight. Second, there are costs per departure, which are primarily aircraft

servicing costs; these include cleaning, fueling, and related ground operations. Third, there are

costs per enplaned passenger, which account for traffic servicing costs, such as passenger and bag-

gage processing. Fourth, there are costs per distance, which reflect primarily fuel costs. Fifth and

finally, there are indirect and overhead costs; this category includes sales, advertising, management,

and other categories that are not clearly mapped to any specific units of the flight operation.
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The specification of the cost equation builds on the different categories described above:

ĉk = ρFk + βS
i Ramp-to-rampk + γi,o + γi,c1 + γi,d + γi,c2 + γt + ωk, (21)

where Fk is fuel expenditure per available seat; Ramp-to-rampk is the flight duration measured in

hours; γi,o, γi,c1 , γi,d, and γi,c2 are fixed effects of each airport along a route interacted with airline;

γt is a quarter fixed effect; and ωk is an idiosyncratic cost shock. The key parameter in equation

(21) is ρ: it informs how the implied cost varies across the different levels of fuel expenditure. The

additional terms in equation (21) map the other cost categories described above. Ramp-to-rampk

is a proxy for costs per block hour, with parameter βS
i accommodating differences across airlines.

A rich set of fixed effects captures how average costs and costs per enplaned passenger and de-

parture vary for each airline at each airport. A time fixed effect captures average variation in costs

across quarters.

Estimation. In the aviation literature, there is often a trade-off between the dimensionality of

the characteristics space and the computational performance of the estimation procedure. Even

though most papers work with large data sets, it is common to use a small set of proxies and

dummy variables instead of a flexible set of fixed effects, especially when applying maximum

likelihood or generalized method of moments (GMM) estimators. For example, many papers have

used average temperatures and dummies for tourist destinations (e.g., Reiss & Spiller, 1989; Berry

et al., 2006; Berry & Jia, 2010) and a dummy variable for whether an airport is slot-controlled or a

hub (e.g., Berry & Jia, 2010; Pagoni & Psaraki-Kalouptsidi, 2016). One exception is Aguirregabiria

and Ho (2012), which specifies demand and cost equations with several fixed effects; that paper,

however, performs separate 2SLS estimations for demand and supply, thus adding the assumption

that error terms across both equations are uncorrelated.

Specifications with a high-dimensional characteristic space create additional issues, especially

for GMM estimation. Since the joint demand-supply system is nonlinear in parameters α and λ,

fixed effects cannot be directly factored out of the equations. Leaving a large number of dummy

variables raises computer memory requirements and computation time, both of which can in-

crease exponentially with the number of covariates. Moreover, numerical minimization routines

become more computationally challenging when there are many moment conditions (Bennett,

Kallus, & Schnabel, 2019).
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I address the limitation described above using a method proposed by Conlon and Gortmaker

(2020).19 This method first modifies the estimating equations so that nonlinear terms are absorbed

in the left-hand side. Then, fixed effects are factored out using the method of alternating projec-

tions (Bauschke et al., 2003). With these transformations, estimating linear parameters becomes

computationally simpler. Furthermore, linear parameters can be expressed as functions of non-

linear parameters. These steps result in a much faster estimation since the numerical nonlinear

optimization routine only searches over a 2-dimensional space, with linear parameters calculated

in the inner loop.

Identification. Three variables in equation (20) are potentially correlated with unobserved char-

acteristics (ξk): prices, within-nest shares, and flight frequency (Berry & Jia, 2010). To address this

endogeneity, I construct instruments following the aviation literature (Berry et al., 2006; Berry &

Jia, 2010; Aguirregabiria & Ho, 2012; Pagoni & Psaraki-Kalouptsidi, 2016). There are four groups

of instruments. First, the competition-shifting instruments include (i) the number of airlines in a

market, (ii) the number of products offered by competitors, (iii) the share of competitors’ products

that are nonstop flights, (iv) the number of potential legacy entrants, and (v) number of potential

low-cost entrants. Second, (vi) fuel cost per available seat is a cost-shifter. Third, (vii) complemen-

tary density along segments measures the number of passengers from other markets transported

on the same segments of a route; this instrument indicates the scale of operations that are comple-

mentary to a product and affect both costs and frequency of service. The fourth group includes all

exogenous variables in equation (20).

The exogeneity of fuel expenditures in (21) relies on three factors. First, jet fuel closely follows

crude oil price shifts, as shown in Figure A-4. Hence, since jet fuel accounts for a small fraction of

refined oil products, shocks to jet fuel prices largely reflect changes that are exogenous to the avi-

ation sector. Second, fleet and network composition affecting fuel use reflect long-term decisions

which are unlikely to respond quickly to recent fuel price shocks. Thus, concerns over responses to

small shocks are mitigated by the fact that the data set considers only a short period. Third, while

fuel-saving operations are technically possible, these have narrow margins because they typically

extend travel time and increase time-related operating costs, such as crew assignment and aircraft

turnover (Belobaba et al., 2015). Moreover, behavioral responses to managerial incentives might

only marginally affect fuel efficiency. For instance, Gosnell, List, and Metcalfe (2020) find statisti-

19A detailed description of the estimation procedure is presented in Appendix A.4.
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cally significant efficiency gains from monitoring and incentivizing pilots directly. Nevertheless,

the potential effects show reductions of less than 1% in total fuel use for international flights.

Shorter distances in domestic flights offer less room for route adjustments, so those gains could be

even smaller here.

Given the above, identification in this estimation relies on the exogeneity of the instruments in

each equation. These identification assumptions can be arranged in a vector of moment conditions

of the form  E
(
ZD
k ξk

)
E
(
ZS
k ωk

)
 =

 0

0

 , (22)

where ZD
k is the vector of demand instruments and ZS

k is the vector of supply instruments (the

vector of supply covariates, in this case). After factoring out fixed effects—corresponding to ap-

proximately 3,000 dummy variables—these conditions form a system with 22 moment conditions

and 16 parameters. This system is the base of the 2-step GMM estimation used in this paper.20

Reported standard errors are heteroskedasticity robust and clustered by non-directional city pairs

to allow for correlation across markets in opposite directions.

Estimation results. The results for the joint estimation procedure are shown in Table 3, with

demand and supply coefficients in separate columns. The key demand coefficients estimated in

Table 3 are largely in line with the literature. Estimates for α in more recent studies generally

vary between −1.36 (Aguirregabiria & Ho, 2012) and −0.45 (Pagoni & Psaraki-Kalouptsidi, 2016).

Berry and Jia (2010) differentiate leisure and business travelers; based on 2006 data, they estimate

the price parameter as −1.05 for the first group (estimated as 63% of consumers) and −0.10 for the

second group. Parameter λ depends on the nesting assumption; among papers that also group all

flights in the same nest, estimates of 1 − λ are typically between 0.3 and 0.4. Other demand coef-

ficients in Table 3 also present the expected signs and are in line with the literature. For instance,

consumers value a higher frequency of service, meaning more opportunities for convenient travel

times. A larger number of offered destinations increases the value of frequent flier programs, thus

making consumers more willing to travel with airlines that have more destination options. More-

over, the positive coefficient on market distance captures the value of air travel. The results also

confirm that consumers dislike connecting flights, as they increase both the number of stops and

20Appendix B.1 shows the results based on alternative estimators and nesting choices.
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Table 3: Results for the joint demand-supply estimation of the structural model.

Demand Supply
ln(skt/s0t) ckt

Price ($100) [−α] -0.846 Fuel expenses [ρ] 0.693
(0.114) (0.123)

ln(share within nest) [1 − λ] 0.400 Total ramp-to-ramp time (h) 0.152
(0.049) (0.014)

Departures per week 0.036 × American -0.040
(0.002) (0.007)

Number of stops -0.803 × Delta 0.046
(0.071) (0.008)

Market distance (100mi.) 0.083 × United -0.018
(0.015) (0.008)

Market distance squared (100mi.)2 -0.001 × Alaska -0.011
(0.028) (0.032)

Connection extra distance (100mi.) -0.084 × JetBlue -0.015
(0.009) (0.010)

Connection extra distance sq. (100mi.)2 0.327 × Other low-cost -0.126
(0.054) (0.007)

Share of delayed departure (%) -0.006
(0.001)

Destinations from origin 0.012
(0.002)

Observations 267,967
Objective function minimum 3.46 ×10−5

Notes: standard errors, shown in parentheses, are clustered by non-directional city pairs (markets in
opposite directions are clustered together). The demand equation includes fixed effects for airline, ori-
gin airport-by-quarter, and destination airport-by-quarter. The supply equation includes fixed effects
for quarter and for each route airport-by-airline. Southwest is the base (omitted) airline in the interac-
tion with ramp-to-ramp time.

the total distance traveled; the positive coefficient on extra distance squared indicates that this

marginal disutility decreases with distance. Finally, consumers also dislike flights that were more

frequently delayed in the previous quarter, although the effect is quite small.

The supply side of Table 3 shows that a $1 increase in fuel costs per available seat translates, on

average, to a $0.69 increase in implied costs. It is worth mentioning that ρ is not itself a cost pass-

through parameter but, instead, a parameter that flexibly captures how marginal costs used for

pricing vary with observed fuel costs. In equilibrium, the realized cost pass-through also depends

on each market’s demand and structure. Other cost parameters indicate an expected pattern: the

costs per block hour and per passenger are generally greater among legacy carriers than in low-
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cost carriers.

Model validation. To assess the validity of the model, I compare predicted outcomes with out-

of-sample values reported by airlines in the Form 41 Financial database. This database contains

quarterly aggregate indicators reported by airlines, including revenue and operating costs by

available seat mile (ASM). These data are not used to estimate structural parameters, so they are

good candidates for performing a sanity check on the model. In particular, I evaluate the model’s

ability to generate reported patterns in average revenues, costs, and markups per ASM by airline.

These metrics are widely used for performance evaluation in the aviation sector and capture the

focal point of the model’s application: markups.

Table 4 shows how model outcomes compare with reported financials. The last row shows

that predictions for revenue, cost, and markups reasonably approximate the values reported by

airlines. For individual airlines, however, the quality of the predictions varies. Differences in

predicted versus reported revenues have two main explanations. The first reason is related to

selection: the data set used for prediction skews towards larger and more competitive markets

and, thus, may not accurately represent the average revenue in the whole network. The second

reason is that the model does not capture product unbundling, so predicted revenue comes from

ticket sales only. In practice, baggage, reservation, and cancellation fees make up a small fraction

of airline revenues; however, for low-cost carriers (LCCs), these sources of revenue can represent

a large share of total operating revenues (Belobaba et al., 2015; Brueckner et al., 2015). As a con-

sequence, the model has limited ability to reproduce some business practices of LCCs and is less

accurate in predicting their revenues.

Errors in revenue prediction, however, are not fully passed onto markup prediction errors be-

cause the model predicts costs that rationalize pricing choices via the Nash-Bertrand equilibria.

Especially for LCCs, predicted average costs are substantially lower than reported figures. Nev-

ertheless, these predictions result in markups that are closer to the reported values. Hence, even

though these equilibria may not capture all components of pricing decisions, they reproduce the

most important patterns in the reported data and provide a good approximation of sector aver-

ages.
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Table 4: Average operating revenue, costs, and markups per available seat-mile (ASM).

Revenue (cents/ASM) Cost (cents/ASM) Markup (cents/ASM) Market share (%)
Airline Predicted Reported Predicted Reported Predicted Reported
Southwest 13.49 13.70 9.64 9.44 3.84 4.26 27.88
American 14.57 14.65 11.45 10.37 3.12 4.28 19.26
Delta 15.91 15.80 12.57 10.89 3.33 4.92 18.93
United 13.91 12.60 11.21 10.75 2.70 1.85 14.30
Other LCCs 4.21 8.31 1.36 6.69 2.86 1.62 8.39
JetBlue 10.73 12.07 8.01 9.46 2.72 2.62 5.62
Alaska 10.07 11.48 7.22 8.37 2.85 3.11 5.61
Sector average 13.03 13.04 9.83 9.58 3.20 3.46

Notes: Predicted averages result from the estimated sector model. Reported values are calculated based on the
BTS Form 41 Financial database. Market shares are based on total passengers enplaned in the period. Averages
statistics are calculated based on sector aggregate revenues, costs, and ASM.

7 Second-best carbon taxation

Based on the estimated sufficient statistics and structural parameters, this section performs coun-

terfactual analyses to quantify the potential welfare effects of carbon taxation in the US domestic

aviation sector. First, section 7.1 examines the local efficiency of carbon taxation by estimating

marginal effects using both sufficient statistics and structural model approaches. Next, section 7.2

focuses on non-marginal changes to calculate optimal taxation levels under market distortions.

Lastly, section 7.3 considers the effects of substituting the current sales tax for a revenue-neutral

carbon tax.

The welfare analyses below consider three values for the SCC to estimate damages of carbon

emissions. The low SCC scenario is set at $50/ton CO2, a reference value commonly used in the

literature and in line with the US Federal SCC of $51 set in 2021. The medium SCC of $200/ton

CO2 rounds up recent estimates of $185 (Rennert et al., 2022) and $190 (EPA, 2022) based on a 2%

discount rate. The high SCC scenario is set at $300/ton CO2, rounding the estimate of $308 in

Rennert et al. (2022) when a 1.5% discount rate is used.

Each gallon of jet fuel burned emits an average of 9.57 kg CO2 (EIA, 2016). To account for

other greenhouse gases, these emissions can be converted to CO2-equivalent terms. In this paper,

I use a 1.4 conversion factor, which is the central estimate in Azar and Johansson (2012). Hence,

one gallon of jet fuel accounts for approximately 13.4 kg of CO2-equivalent—this is the emission

intensity used to calculate climate damages in the welfare analyses below.
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7.1 Marginal abatement costs and welfare consequences

Table 5 shows the estimated effects of a 1-cent increment in the current volumetric jet fuel tax

based on two different methods. The second column reports marginal effects calculated using

sufficient statistics estimated with aggregate market data, as outlined in section 6.1. The third

column reports equivalent outcomes calculated by solving the estimated sector model with a 1-

cent/gallon tax increase. For reference, this increase is equivalent to an additional carbon tax of

about $0.75/ton CO2.

Table 5: Effects of raising the jet fuel tax by 1 cent/gallon

Sufficient statistics Structural model
Marginal costs ($/tCO2)

Marginal abatement cost (MAC) 244.27 210.92
Markup wedge 185.12 154.27
Sales tax wedge 54.10 53.37

Aggregate market changes
Mean ticket price +0.087% +0.065%
Passengers -0.156% -0.197%
Emissions -0.171% -0.241%

Welfare changes (million $)
Short-run private surplus (SRPS) -23.8 -29.3
Social welfare, SCC of: $50 -18.9 -22.3

$200 -4.2 -1.5
$300 +5.7 +12.3

Notes: The baseline tax is 4.4 cents/gallon or, equivalently, $3.28/ton CO2.

Despite the substantial differences in the data used and the assumptions underlying each ap-

proach, Table 5 shows that both methods deliver relatively similar estimates of the MAC: about

$244/ton CO2 for the sufficient statistics and $211 for the structural approach. However, the sim-

plified models of consumption and product competition underlying sufficient statistics lead to

two key differences. First, the lack of substitution within markets underestimates emission reduc-

tions relative to the structural approach. This underestimation inflates marginal cost estimates,

as it shrinks the denominator. Second, as indicated in Table 4, markups calculated from finan-

cial reports are typically higher than those predicted with the structural model, further increasing

the gap between MAC estimates due to higher markup wedges. Nevertheless, key estimates re-

main quantitatively similar: the MAC with sufficient statistics is only about 16% higher than that
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estimated with the structural model.21

The bottom rows in Table 5 show the marginal effects on welfare and allow us to gauge the

second-best efficiency of a carbon tax. The private deadweight loss of marginally increasing the

tax amounts to about $24–29 million. Whether private losses are offset by a social benefit of carbon

damage reductions depends on the SCC scenario. In the low and medium SCC scenarios, both

approaches estimate that private costs exceed the benefits, thus predicting that raising the carbon

tax would lead to a net reduction in welfare. In the high SCC scenario, both approaches show

welfare gains, indicating that the current jet fuel tax is below its second-best optimal value.

To find the optimal tax level, however, we cannot rely on the sufficient statistics approach, as

it evaluates a constant MAC based on marginal welfare changes. In such cases, structural models

are better equipped to handle non-marginal assessments (Kleven, 2021). Still, Table 5 illustrates

how the comparison of results from these methods serves as a sanity cross-check, as each approach

introduces limitations based on their set of assumptions.

7.2 Non-marginal welfare changes and the optimal carbon tax

With a structural model of the sector, it is possible to evaluate non-marginal increases in the jet

fuel tax and recalculate the equilibrium outcomes in each market. Panel (a) in Figure 2 shows that

social welfare decreases under a low or medium SCC. Hence, no positive optimal tax exists when

the SCC is $50 or $200. In a high SCC scenario, the optimal tax is approximately $107/ton CO2,

corresponding to a jet fuel tax increase of $1.39/gallon. At about a third of the marginal damage,

this optimal tax is much lower than the standard Pigouvian tax prescription of $300.

To motivate the mechanisms driving the optimal tax level, panel (c) in Figure 2 decomposes

welfare variations into private surplus and external damages. The marginal damage avoided is

analogous to the social benefit of a carbon tax, whereas the marginal loss of SRPS is analogous to

the MAC (in terms of private welfare). Note, however, that these marginal values are presented

in terms of tax level changes rather than emissions. This panel shows that market distortions lead

to a high marginal loss of SRPS. If damages are small relative to SRPS losses, as in the case of low

and medium SCCs, social welfare decreases as the tax increases. When the marginal damage is

higher than the marginal SRPS loss at the baseline, the optimal tax is found at the intersection of

21The MACs and welfare effects are calculated assuming a fixed fuel intensity. This assumption is relaxed in Ap-
pendix F, where I extend the model and use an estimated elasticity of substitution between fuel and non-fuel inputs to
obtain bounds for the MAC. The results show that, for a plausible range of elasticities, adding input substitution results
in modest reductions (7–13%) in the MAC estimates shown in Table 5.
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Figure 2: Welfare consequences of different levels of carbon taxation.

(a) (b)

(c) (d)

Notes: Mg. Damage corresponds to the marginal benefit of lowering emissions, which depends on the social cost of
carbon (SCC) and the emission reductions at each tax level. Loss of SRPS (short-run private surplus) is analogous to the
aggregate private cost of reducing emissions with a carbon tax.

these curves—the standard marginal cost equals marginal benefit result.

Changes in SRPS and emissions allow us to evaluate the costs of abating emissions with a

carbon tax. Panel (b) in Figure 2 shows how costs and tax wedges vary with abatement levels.

From the baseline, the MAC is approximately $211/ton CO2. Hence, with low and medium SCCs,

the private welfare cost of abatement exceeds the avoided damages at the margin. When damages
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are high and exceed the initial MAC, the optimal abatement level is found wherethe MAC curve

intersects with the specified SCC level. For instance, the optimal tax for an SCC of $300/ton CO2

corresponds to an abatement of 16.6 million tons of CO2 (a 29% reduction).

Panel (b) in Figure 2 also shows that the wedge due to markups initially accounts for about 75%

of the distortion wedges. As the abatement level increases with a higher carbon tax, incomplete

pass-through tends to decrease markups, thus reducing the markup wedge. In contrast, with more

expensive tickets due to a higher carbon tax, the distortion from the sales tax increases.22 For the

high-SCC case, the difference between the $300 SCC and the $107 optimal tax indicates a $193

wedge, of which approximately $133 is due to market power and $60 to sales tax.

Abatement costs represent changes in private welfare, which can be further decomposed.

Panel (d) in Figure 2 displays the cumulative changes in tax revenue, consumer surplus, and op-

erating profits. This panel shows that the burden of the carbon tax is split approximately evenly

between firms and consumers. For the high-SCC optimal tax of $107/ton CO2, consumer sur-

plus would fall by $3.79B and operating profits by $3.86B. An increase of $3.62B in tax revenues,

however, could be allocated to partially offset losses to either side.

7.3 Is the double dividend possible?

Even though market distortions act in the direction of reducing aggregate emissions, they are im-

perfect substitutes for an externality tax. After all, sales taxes do not necessarily match the exter-

nalities generated by the carbon emissions of each product. For example, all else equal, consumers

are willing to pay a premium for shorter, nonstop flights, thus leading to higher equilibrium fares

and sales taxes paid. If this premium exceeds the cost differentials to stop flights, then the non-

stop flight would pay higher taxes per emission unit despite being more fuel-efficient and less

polluting.

Welfare theory suggests that an alternative design could improve the efficiency of taxation as

a climate policy instrument. A feasible alternative would still need to raise taxes, as the revenue

from the existing sales tax funds several government operations, including the Federal Aviation

Administration (see section 2). In this sense, replacing the sales tax with a revenue-neutral carbon

tax that raises the same amount of revenue could pay a double dividend. First, it could decrease

22The estimated MACs consider aggregate abatement costs. However, as market power and carbon intensity vary
across markets, we can conceptualize market-specific MACs resulting from different wedges. Appendix E examines
individual MACs and shows that even the lowest abatement costs are above $100/ton CO2.
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carbon emissions. Second, it could promote net welfare gains by replacing a less efficient taxa-

tion scheme. However, as established in section 3.5, we cannot determine a priori whether both

dividends exist, as they depend on the particular distribution of prices and emissions in a sector.

To find the revenue-neutral carbon tax level, I run counterfactual simulations setting the sales

tax to zero and incrementing the jet fuel tax by tenths of a cent. The resulting revenue-neutral fuel

tax of $0.823/gallon corresponds to a carbon tax of $61.42/ton CO2.

Table 6 summarizes the changes in the counterfactual scenario implementing the revenue-

neutral carbon tax. The top part of the table shows that such a tax substitution would result in

unintended consequences for climate concerns. Despite the mean ticket price staying relatively

unaffected, a revenue-neutral carbon tax would increase passenger traffic by 1.4% and emissions

by 0.7%. The bottom part of Table 6 confirms a revenue-neutral carbon tax increases welfare in all

three scenarios. However, these increases are driven by increments in private surplus that exceed

the additional damages from slightly higher emissions—i.e., the double dividend does not hold.

Table 6: Effects of substituting the existing sales tax with a revenue-neutral
carbon tax.

Changes with a revenue-neutral carbon tax
Aggregate market changes

Mean ticket price +0.04%
Passengers [million] +1.43% [+4.02]
CO2 emissions [thousand tons] +0.72% [+850]

Welfare changes (million $) SCC of $50 SCC of $200 SCC of $300
Short-run private surplus (SRPS) +557 +557 +557
Damages +43 +170 +255
Social welfare +514 +387 +302

At first glance, the results in Table 6 run counter to the intuition that a tax instrument pro-

portional to the externality should reduce damages. The crucial mechanism to understand how a

carbon tax could increase emissions lies in the distorting roles of pre-existing sales tax and market

power. Figure 3 illustrates these distortions and shows the effects on flights within each quintile

of carbon intensity, measured in emissions per passenger (ek).

Panel (a) in Figure 3 shows the distribution of carbon taxes implied by the existing sales tax,

which was defined as rp̃k/ek in section 3.5.23 These distributions display the potential welfare

23Appendix D presents additional information on the heterogeneity across carbon intensity quintiles. It shows that
higher quintiles on average have longer distances between endpoints and higher prices, but no consistent differences
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Figure 3: The effects of a revenue-neutral carbon tax substitution by carbon intensity quintiles.

(a) (b)

(c) (d)

Notes: Curves show kernel densities for each carbon intensity quintile. Distributions are weighted by total emissions,
so each quintile has approximately the same baseline aggregate emissions. Quintile cut-offs are approximately 320, 410,
530, and 710 Kg of CO2 per passenger.

gains from tax substitution: sales taxes overtax emissions in the least carbon-intense flights while

undertaxing emissions in the most carbon-intense options. A revenue-neutral carbon tax enforces

a uniform tax of 61.42/tCO2 on all emissions, inducing ticket prices to adjust accordingly.

in markups or estimated quality.
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Unlike marginal changes outlined in the theoretical framework, new equilibrium prices here

also respond to non-marginal effective tax changes on competing products. As such, market

power allows firms to adjust markups in order to preserve or gain market share in response to

changes in the tax burden of each product. Panel (b) in Figure 3 illustrates this mechanism. It

shows that the distribution of changes in taxes collected reflects the adjustment for the initial un-

der/over taxation of emissions. However, the shifts in tax burden are not fully passed through

onto prices because firms adjust markups to compensate for these changes.

Panel (c) in Figure 3 shows that, due to markup adjustments in response to changes in tax

burden, a substantial share of emissions in the upper quintiles observes price decreases. The com-

bination of lower markups and the elimination of the deadweight loss of the sales tax contribute

to increases in private surplus, as reported in Table 6. However, markup reductions in the upper

quintiles effectively shift the price change distribution to the left, leading many carbon-intensive

products to even experience small reductions in prices. Consequently, the 3rd and 4th quintiles

observe net increases in aggregate emissions; the sharp decrease in emissions in the 5th quintile

is not enough to offset increases in all other quintiles. Hence, despite net welfare gains, aggregate

emissions increase with this tax substitution.

8 Conclusion

This paper has studied how oligopoly market power and existing distortionary taxes affect envi-

ronmental policy. Building on seminal work in environmental economics (Buchanan, 1969), this

paper has shown how market imperfections affect optimal environmental taxes, and how welfare

effects can be decomposed and attributed to each market imperfection. Based on this theoreti-

cal framework, I have evaluated the potential impacts of a carbon tax on aviation. In doing so, I

have used sufficient statistics to calculate marginal effects and a structural estimation approach to

calculate non-marginal effects and optimal taxes.

The main findings indicate that existing distortions are large and, at the margin, exceed the

climate damages from aviation in scenarios where the social cost of carbon is below $211. As a

consequence, there would be no positive optimal carbon tax in this sector unless the social cost

of carbon is high. Even if a positive optimal tax exists, it represents a fraction of the marginal

damage and, thus, it is below the standard Pigouvian tax prescription. I find that the wedge

between marginal damage and optimal tax is primarily driven by market power, which accounts
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for about three-quarters of the wedge. Further analysis shows that attempting to remediate the

distortion brought by a distortionary sales tax with a revenue-neutral carbon tax could result in

increased emissions. This seemingly puzzling result stems from the fact that firms can reduce

markups and undo part of the effects of increased taxation on the most polluting flights. In doing

so, demand and emissions do not fall enough to decrease aggregate emissions.

The analyses presented in this paper are subject to a number of limitations. First, all results

concern short-run effects, as airlines’ networks and fleets are held fixed. For this reason, the size

of distortions can be underestimated when considering longer periods because higher fuel taxes

may lead to firm exit that would increase market power for the remaining players. However, such

decisions typically involve strategic considerations beyond pure short-run profitability (Belobaba

et al., 2015). In addition, over longer periods, average fuel efficiency tends to increase slowly due

to fleet turnover. Second, all analyses are in partial equilibrium and overlook effects on other

transportation modes. In practice, more expensive flights may lead to substitution to other modes

on some or all parts of a trip. These substitution possibilities create leakage opportunities, which

the models used in this paper do not capture. Third, climate change is the only environmental

externality considered in this paper. Aviation has other significant environmental consequences,

especially those with local impacts. For instance, fuel burn affects local air pollution and health

outcomes (Schlenker & Walker, 2016), and noise pollution affects property values in the neighbor-

hood of airports (Nelson, 2004).

With limitations considered, the results in this paper illustrate a crucial challenge for aviation:

abatement via demand reduction has a high cost in terms of private welfare. Existing taxes and

market power already drive equilibrium quantities down, so further reductions in demand come

with significant private costs. These features suggest that alternative policies may be more ad-

equate in the short run. For instance, multi-sector emission permits and offsets could be better

alternatives, as they take advantage of lower abatement costs in other sectors. However, in the

long run, more ambitious efforts to curb aviation emissions are likely to depend on technological

advancements toward fuel alternatives, among which sustainable aviation fuels and electric and

hydrogen-powred planes are potential candidates in development (Lohawala et al., 2024).
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A Estimation procedures and welfare analyses

The first two sections in this appendix outline the derivation of sufficient statistics and the corre-

sponding expressions for evaluating marginal welfare changes. The third section shows how market

equilibria are solved to calculate implied operating costs and counterfactual outcomes with different

tax levels. Finally, the fourth section explains how I estimate the structural model using GMM

with high-dimensional fixed effects.

A.1 Derivation of sufficient statistic ε

Consider a composite flight Qmt =
∑

k∈Kmt
qk for market m in period t. Let the attributes of

the composite flight be the average of attributes among flights in this market, weighted by the

relative market shares sk|g (or shares within nest). That is, we define the average pre-tax price

p̃mt =
∑

k∈Kmt
sk|gp̃k, average price pmt =

∑
k∈Kmt

sk|gpk, average fuel use fmt =
∑

k∈Kmt
sk|gfk,

and average markup µmt =
∑

k∈Kmt
sk|gµk.

As discussed in section 6.1, I assume that changes to markups, non-fuel costs, and relative

market shares are negligible following a small change in tax fuel τ . Therefore, a marginal increment

in the fuel tax is fully passed on to consumers.

Summing equation (17) over all products in the market, it follows that

dQmt

dτ
=

∑
k∈Kmt

∑
j∈Kmt

∂qk
∂pj

dpj
dp̃j

dp̃j
dτ

= (1 + r)
∑

k∈Kmt

∑
j∈Kmt

∂qk
∂pj

fj = (1 + r)
∑

j∈Kmt

fj
∂Qmt

∂pj
. (A-1)

With no change in relative market shares after a marginal change in τ , it follows that price

changes are proportional: dpmt = sj|gdpj . Hence,

∂Qmt

∂pj
=
∂Qmt

∂pmt

∂pmt

∂pj
= sj|g

∂Qmt

∂pmt
. (A-2)

Combining (A-1) and (A-2) yields

dQmt

dτ
= (1 + r)

∑
j∈Kmt

sj|gfj
∂Qmt

∂pmt
= (1 + r) fmt

∂Qmt

∂pmt
(A-3)
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Then, expressing (A-3) in terms of elasticities, it follows that

dQmt

dτ
= (1 + r)

fmt

pmt
Qmtε = (1 + r)

1

wt

Fmt

p̃mt
Qmtε = ε

ηmt

wmt
Qmt, (A-4)

where ηmt =
∂ ln pmt

∂ lnwmt
is the jet fuel cost pass-through elasticity and ε = ∂ lnQmt

∂ ln pmt
is the elasticity of

aggregate demand with respect to the market average ticket price.

A.2 Marginal welfare calculations with sufficient statistics

We can use equation (5) to analyze how welfare and its components change given a marginal change

in tax τ . Here, τ is a volumetric tax on jet fuel rather than a tax on emissions. Dividing τ by the

equivalent carbon intensity of jet fuel burn (h = 0.0134 ton CO2/gallon) gives the tax per ton of

CO2. In this derivation, I assume a new equilibrium exists but remain agnostic about the specific

changes in price (dpkdτ ) and quantity (dqkdτ ). Differentiating each component with respect to τ (and

omitting function arguments for clarity) yields

dCSm
dτ

= −
Km∑
k=1

qk
dpk
dτ

(A-5)

dΠm

dτ
=

Km∑
k=1

{
µk
dqk
dτ

+

[
dp̃k
dτ

− fk

]
qk

}
(A-6)

dTm
dτ

=

Km∑
k=1

[
qkfk + τfk

dqk
dτ

]
+ r

Km∑
k=1

[
qk
dp̃k
dτ

+ p̃k
dqk
dτ

]
(A-7)

dΦ

dτ
= ϕh

Km∑
k=1

fk
dqk
dτ

. (A-8)

Equation (A-5) uses the first order optimality condition u′k (x
∗
k) = αpk , for k ∈ {1 . . .Km}. In

(A-6), the term µk ≡ p̃k − c̃k − (wk + τ) fk denotes the operating markup. In the same equation,

dp̃k
dτ −fk captures the marginal change in markup; this term is equal to zero when there is complete

tax pass-through. In (A-8), ϕh is the marginal damage per gallon of jet fuel burned.

We can rewrite equation (A-5) to evaluate a marginal change in consumer surplus using the

composite flight Qmt

dCSmt

dτ
= −

Km∑
k=1

qk
dpk
dτ

= − (1 + r)Qmt

Km∑
k=1

sk|gfk =
dCSmt

dτ
= − (1 + r)Qmtfmt. (A-9)
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With constant relative market shares under a marginal tax change, it follows that changes in

quantities are proportional: dqk = sk|gdQmt. Then, rewrite equation (A-6) for marginal changes in

profits using the composite flight as follows

dΠmt

dτ
=

Km∑
k=1

{
µk
dqk
dτ

+

[
dp̃k
dτ

− fk

]
qk

}
=

Km∑
k=1

µksk|g
dQmt

dτ
= µmt

dQmt

dτ
,

where the second step uses the full pass-through assumption to cancel out the term for changes in

markups. Then, using (A-4), it follows that

dΠmt

dτ
= µmt

ηmt

wmt
Qmtε. (A-10)

Following a similar procedure for changes in tax revenue, rewrite equation (A-7) as

dTmt

dτ
=

Km∑
k=1

[
qkfk + τfk

dqk
dτ

]
+ r

Km∑
k=1

[
qkfk + p̃k

dqk
dτ

]

= (1 + r)Qmtfmt +

Km∑
k=1

(τfk + rp̃k) sk|g
dQmt

dτ

= (1 + r)Qmtfmt + (τfmt + rp̃mt)
dQmt

dτ
,

so that
dTmt

dτ
= Qmt

{
(1 + r) fmt + (τfmt + rp̃mt)

ηmt

wmt
ε

}
. (A-11)

Lastly, for damages, rewrite equation (A-8) as

dΦmt

dτ
= ϕh

Km∑
k=1

fk
dqk
dτ

= ϕhfmt
dQmt

dτ
= ϕhfmt

ηmt

wmt
Qmtε. (A-12)

Combining equations (A-9)–(A-12), the marginal change in welfare for market m in period t,

using sufficient statistics µmt, ηmt, and ε, is given by

dWmt

dτ
= (µmt + rp̃mt + (τ − ϕh) fmt)

[
ηmt

wmt
Qmtε

]
. (A-13)

The change in aggregate welfare for the sector is the sum of (A-13) evaluated for each market and
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period,

dW

dτ
≡

∑
m∈M

4∑
t=1

dWmt

dτ
, (A-14)

where M represents the set of all markets. The marginal change to short-run private surplus is a

similar expression, only dropping the damage term:

dSRPSm
dτ

= (µmt + rp̃mt + τfmt)

[
ηmt

wmt
Qmtε

]
. (A-15)

The marginal abatement cost (MAC) then divides (A-15) by the marginal change in emissions

demt
dτ = hfmt

dQmt

dτ . Hence,

MACmt (τ0) ≡
dSRPSmt

dτ
demt
dτ

=
(µmt + rp̃mt + τfmt)

[
ηmt

wmt
Qmtε

]
hfmt

[
ηmt

wmt
Qmtε

] ,

so

MACmt (τ0) =
1

h

[
τ +

µmt + rp̃mt

fmt

]
, (A-16)

where τ0 = $0.044/gallon is the baseline jet fuel tax. Aggregating for the entire sector, the marginal

abatement cost is given by

MAC (τ0) ≡
dSRPS

dτ
de
dτ

=
1

h

τ +
∑

m∈M
∑4

t=1 (µmt + rp̃mt)
[
ηmt

wmt
Qmt

]
∑

m∈M
∑4

t=1 fmt

[
ηmt

wmt
Qmt

]
 . (A-17)

Note that the expressions for the MAC do not depend on elasticity ε; this reflects the assumption

that changes in quantities are proportional, so emissions change linearly with quantities.

A.3 Solving market equilibria and operating costs

As described in section 4.3, firms choose a vector of pre-tax prices P̃imt that maximize profits,

taking the competitor prices as given

P̃imt = argmax
∑

k∈Kimt

(p̃k − ck) sk,

where Kimt is the set of flights offered by airline i in market m and period t. The first-order opti-

mality conditions for each product are described in equation (14). In a Nash-Bertrand equilibrium,
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each price choice satisfies (14), forming a system of nonlinear equations with dimension equal to

the number of products. To simplify notation, drop subscripts mt and index products in a given

market from 1 to K. Then, we can represent the stacked first-order conditions as

s1

s2

...

sK


︸ ︷︷ ︸

S

+





∂s1
∂p̃1

∂s2
∂p̃1

· · · ∂sK
∂p̃1

∂s1
∂p̃2

∂s2
∂p̃2

· · · ∂sK
∂p̃2

...
...

. . .
...

∂s1
∂p̃K

∂s2
∂p̃K

· · · ∂sK
∂p̃K


◦



O11 O21 · · · OK1

O12 O22 · · · OK2

...
...

. . .
...

OK1 OK2 · · · OKK



︸ ︷︷ ︸
J



p̃1 − c1

p̃2 − c2

...

p̃K − cK


︸ ︷︷ ︸

P̃−C

=



0

0

...

0


,

(A-18)

where ◦ is the element-wise (Hadamard) product. Cells Oij indicate product ownership and receive

1 if products i and j are offered by the same airline and 0 otherwise. Partial derivatives of shares

with respect to prices are obtained from the demand equation (12). Own and cross-price derivatives

are given by

∂sk
∂p̃k

=
α

λ
(1 + r) sk

[
(1− λ) sk|g + λsk − 1

]
(A-19)

∂sk
∂p̃j

=
α

λ
(1 + r) sj

[
(1− λ) sk|g + λsk

]
, (A-20)

where the tax term follows from ∂pk
∂p̃k

= (1 + r). Note that

∂sk
∂p̃j

=
α

λ
(1 + r)

[
(1− λ)

sjsk
1− s0

+ λsjsk

]
=
α

λ
(1 + r) sk

[
(1− λ) sj|g + λsj

]
=
∂sj
∂p̃k

.

Hence, since all products are in the same nest, the matrix of partial derivatives is symmetric.

Because the ownership matrix is symmetric, the resulting matrix J is also symmetric. Define an

auxiliary matrix Γ as

Γ ≡


1−λ
1−s0

s1 + λs1

...

1−λ
1−s0

sK + λsK

 =

(
1− λ

1− s0
+ λ

)
S =

(
1− λs0
1− s0

)
S,
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where s0 is the share of the outside option (not flying). Then, we can write the matrix of partial

derivatives as

∂s1
∂p̃1

∂s2
∂p̃1

· · · ∂sK
∂p̃1

∂s1
∂p̃2

∂s2
∂p̃2

· · · ∂sK
∂p̃2

...
...

. . .
...

∂s1
∂p̃K

∂s2
∂p̃K

· · · ∂sK
∂p̃K


=
α

λ
(1 + r)SΓ′ − α

λ
(1 + r)



s1 0 · · · 0

0 s2 · · · 0

...
...

. . .
...

0 0 · · · sK


.

Thus, matrix J can be constructed using the following expression

J =
α

λ
(1 + r)



(
1− λs0
1− s0

)
SS′ −



s1 0 · · · 0

0 s2 · · · 0

...
...

. . .
...

0 0 · · · sK




◦O, (A-21)

where O indicates the ownership matrix.

Operating costs. Using (A-18), baseline operating costs are the solution to the following equa-

tion

Ĉmt = P̃mt + Ĵ−1
mtSmt,

where vectors P̃mt and Smt are observed in the data; matrix Ĵmt is calculated using (A-21), so it

depends on Smt and estimated parameters α̂ and λ̂.

Counterfactual equilibria. As described in section 4.3, the baseline marginal operating cost

per passenger is given by ck = c̃k+(wt + τ0) fk, where c̃k is the constant marginal cost per passenger

excluding fuel costs, wk is the jet fuel cost per gallon, and fk is the volumetric fuel consumption

per passenger. Hence, for a tax change from τ0 to some tax level τ , operating cost increases by

∆ck = fk (τ − τ0).

Let Cmt (τ) denote the vector of operating costs after a tax change from the baseline. Then,

the new Nash-Bertrand equilibrium satisfies

P̃mt,τ = −Ĵ−1
mtSmt

(
P̃mt,τ

)
+ Ĉmt (τ) , (A-22)
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where Ĵ−1
mt,τ is itself a function of Smt, which in turn is a function of the pre-tax price vector P̃mt,τ .

Since the right-hand side of (A-22) also depends on P̃mt,τ , the equilibrium is characterized by a

fixed point problem.

I rewrite equation (A-22) as a root-finding problem, P̃mt,τ+Ĵ
−1
mtSmt

(
P̃mt,τ

)
−Ĉmt (τ) = 0. To

solve it, I use the trust region method with auto-scale and finite-difference approximated Jacobians

(Nocedal & Wright, 2006). For each market and period, I solve for the equilibrium pre-tax price

vectors over a grid of tax levels. This tax level grid ranges from −τ0 (removing the existing tax) to

$150/ton CO2. The grid is adaptative and sets (i) intervals of $1 around $0 and $108 to increase the

precision of marginal changes from the baseline and the optimal tax level; (ii) intervals equivalent

to a tenth of a cent change in the jet fuel tax (about 0.07 in the carbon tax) around $61, to

increase the precision of revenue-neutral tax effects; and (iii) intervals of $10 elsewhere. To speed

up the solver, I parallelize solutions across markets but solve them sequentially in the grid, using

the previous closest available solution as the initial guess (or the observed price vector for nodes

neighboring the baseline). With equilibrium prices, I calculate equilibrium shares and quantities,

which are then used to calculate consumer surplus, profits, tax revenues, emissions, and damages.

A.4 GMM estimation with high-dimensional fixed effects

As discussed in section 6.2, estimating GMM with high-dimensional fixed effects and nonlinear

parameters can create technical challenges. On the one hand, nonlinear parameters hinder the

possibility of performing within transformation to eliminate fixed effects. On the other hand,

leaving fixed effects as dummy variables increases memory and CPU requirements and may cause

numerical instability when solving the problem with a large number of moment conditions. I

address these issues by adapting the method proposed by Conlon and Gortmaker (2020), which I

summarize below.

For a shorthand notation, let θ = [α, λ] represent the vector of nonlinear parameters. Also, let

θn = [αn, λn] represent the value of such parameters in the n-th iteration of the algorithm. We start

with an initial guess θ0. In this paper, I define the initial guess to be the parameters estimated

using two-stage least squares. Nevertheless, varying the initial guess within reasonable values does

not change the final estimates.
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Step 1: Concentrate out nonlinear parameters. Define variable Y D
k by rewriting the esti-

mating equation for demand (20) as

Y D
k ≡ (ln sk − ln s0) + αnpk − (1− λn) ln sk|g = XD

k β
D + δi + δot + δdt + ξk, (A-23)

where fixed effects δi, δot, and δdt are separated from the vector of product characteristics. These

fixed effects represent airline, origin location-by-quarter, and destination location-by quarter, re-

spectively. Similarly, define Y S
k by rewriting the estimating equation for supply (21) as

Y S
k ≡ pk − µk (αn, λn)︸ ︷︷ ︸

ck

= ρFk + βSi Ramp-to-rampk + γi,o + γi,c1 + γi,d + γi,c2 + γt + ωk

Y S
k = XS

k β
S + γi,o + γi,c1 + γi,d + γi,c2 + γt + ωk, (A-24)

where the term µk (α, λ) makes it explicit that the markup used to calculate costs is a function of

nonlinear parameters α and λ.

Let XD be the N ×MD matrix of product characteristics relevant for demand (not including

price and share within nest), where N is the number of products (observations) in the data, and

MD is the number of product characteristics excluding fixed effects; in this paper, MD = 8. Let

βD be the MD × 1 vector of linear coefficients associated with demand characteristics. Similarly,

let XS be the N ×MS matrix of product characteristics relevant for supply, where MS = 8. Also,

βS is the MS × 1 vector of linear parameters associated with XS . Here, βS includes parameter ρ

and airline-specific parameters βSi .

Step 2: Absorb fixed effects. With the rearrangement of estimating equations outlined above,

fixed effect terms in equations (A-23) and (A-24) can be eliminated. Since there are multiple fixed

effects in each equation, simple demeaning would not work. Instead, we can absorb these terms

using the method of alternating projections, which iteratively demeans variables until convergence

(Bauschke, Deutsch, Hundal, & Park, 2003). Such a procedure is analogous to repeatedly applying

the Frisch-Waugh-Lovell theorem in order to partial out dummy variables. The resulting equations

can be written as

Ȳ D
k = X̄D

k β
D + ξ̄k

Ȳ S
k = X̄S

k β
S + ω̄k,
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where bars on top of letters indicate demeaned variables.

Step 3: Estimate linear parameters. The moment conditions in equation (22) can be rewrit-

ten as  E
(
Z̄D
k Ȳ

D
k − Z̄D

k X̄
D
k β

D
)

E
(
Z̄S
k Ȳ

S
k − Z̄S

k X̄
S
k β

S
)

 =

 0

0

 ,
with its sample analogue expressed as

1

N

 (
Z̄D

)′
0

0
(
Z̄S

)′

 Ȳ D

Ȳ S


︸ ︷︷ ︸

Ỹ

− 1

N

 (
Z̄D

)′
X̄D 0

0
(
Z̄S

)′
X̄S


︸ ︷︷ ︸

X̃

 βD

βS

 =

 0

0

 ,

where ZD and ZS denote the demand and supply instrument matrices, as outlined in section 6.2.

Note that Ȳ D and Ȳ S are functions of θ. Then, for a given value θn, we can estimate the linear

parameters using GMM with weight matrix W :

 βD (θn)

βS (θn)

 =
[
X̃ ′WX̃

]−1
X̃ ′WỸ (θn) . (A-25)

Since β parameters are linear, this step can be estimated relatively quickly by using routines

optimized for matrix computation.

Step 4: Estimate nonlinear parameters. The nonlinear parameter vector θ is estimated using

a two-step efficient GMM estimation (Hayashi, 2000). The estimated parameter satisfies

θ∗ = argmin
θ
NG (θ)′ ŴG (θ) ,

where G (θ) is the vector of moment conditions evaluated at θ and Ŵ is the GMM weighting

matrix. In the first step, Ŵ1 is calculated based on the clustered residuals of a two-stage least

squares regression. The solution to the first step is used to calculate matrix Ŵ2, and the second

step solves for the nonlinear parameters that minimize the GMM objective function with this

updated matrix.

In this paper, I solve the numerical GMM minimization problem over θ using the BFGS algo-
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rithm (Nocedal & Wright, 2006). For each iteration of θ (outer loop), the algorithm repeats steps

1 to 3 described above to calculate βD, βS , and residuals (inner loop).

B Additional regression results and alternative estimations

This appendix complements section 6 of the paper by showing estimation results using alternative

estimators and specifications.

B.1 Estimating the structural model with two-stage least squares

In this paper, the demand and supply sides of the structural model are jointly estimated using the

generalized method of moments (GMM). An alternative approach used in Aguirregabiria and Ho

(2012) is to estimate the demand and supply equations separately using two-stage least squares

(2SLS). However, these two estimators are not equivalent. As Conlon and Gortmaker (2020) point

out, estimating separate equations with 2SLS implicitly assumes that errors across equations are

uncorrelated: E [ξkωk] = 0. Even though this assumption may not hold in all applications, the 2SLS

estimator is sometimes preferred because it is faster to estimate due to the linearity in parameters.

In this section, I show the results of estimating the structural model using 2SLS and the first stage

estimates when instrumental variables are used.

Table A-1 shows the estimates for the demand equation using 2SLS. This table shows that

demand estimates using 2SLS and GMM (table 3) are generally similar but slightly smaller in

absolute value. To provide further evidence of instrument validity, table A-2 shows the first-stage

regressions for each instrumented variable, as well as the respective F-statistics. Though conditional

F-statistics are substantially smaller than regular F-statistics, especially for price, these values are

well above 13.95, the critical value at 5% with 3 endogenous variables and 7 excluded instruments

(using values from Stock and Yogo (2002), as suggested in Sanderson and Windmeijer (2016)).

Finally, table A-3 shows estimates of supply-side parameters. Here, estimates are slightly dif-

ferent than those from GMM estimation. In particular, the fuel cost parameter ρ is slightly smaller

when estimated by 2SLS, though estimates are less precise in this case due to larger standard errors.
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B.2 Alternative specifications

Section 6.2 shows that the predictions using the estimated structural model reproduce key patterns

in out-of-sample data. Nevertheless, it is helpful to gauge whether alternative choices in the model

would substantially affect the main parameters. Table A-4 considers plausible alternatives based

on the literature.

As in Aguirregabiria and Ho (2012), specification (1) is estimated via OLS to illustrate endo-

geneity bias. When instruments are not used, the price coefficient becomes positive, and the nesting

coefficient is negative—both violate standard assumptions of demand models.

Specification (2) does not include high-dimensional fixed effects combining location and time.

A comparison with the GMM estimates shows that α falls by half, while other key parameters are

less drastically affected. Interestingly, this smaller α is closer to the value of 0.45 found in Pagoni

and Psaraki-Kalouptsidi (2016), which estimate a model without a rich set of location fixed effects.

In this main specification, prices are included at level because it is assumed that the represen-

tative consumer has a constant marginal utility of income equal to α—a standard assumption used

in nested logit estimation and in other papers in the aviation literature. Relaxing this assumption

involves reformulating the welfare framework and requires data on passenger income, which, to my

knowledge, does not exist. Nevertheless, we can evaluate whether the choice of using prices at level

instead of log-prices is influential to other key parameters in the model. Specification (3) in Table

A-4 shows that this is not the case: when including the natural log of prices, estimates of other

parameters are minimally affected.

Specifications (4) and (5) in Table A-4 consider alternative nesting choices. Recall that the

main specification in the paper includes all flights in a single nest, whereas the outside option is

kept in a separate nest. Specification (4) nest flights by airline, as in Aguirregabiria and Ho (2012).

The results show that this specification does not seem to adjust well to the data, as its estimated

price coefficient is positive, violating model assumptions. Since the distinction between stop and

nonstop flights can be relevant for consumer choice, I also consider an alternative that nests these

flight types separately in specification (5). However, as in the previous case, the results show that

nesting by flight type violates model assumptions because λ is negative.
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C Additional details on the data set

This appendix complements section 5 and presents additional information on definitions and vari-

ables that are calculated using multiple sources.

Markets geography. Figure A-2 shows the distribution of traffic across different markets. Lines

connecting locations indicate the total number of passengers flying round trips, with thicker lines

indicating a higher number of passengers. These lines connect only the endpoints of a market

and are not a representation of the actual routes (i.e., they do not show connections). This map

highlights the fact that the largest markets connect dense urban areas on the same coast (such as

Los Angeles–San Francisco and New York–Miami), while a few are coast-to-coast or from a coast

to a large city in the middle of the country (such as Chicago, Denver, and Houston).

Airline groups. When assigning ownership of flights to specific airlines, I group firms based on

the controlling airline. In doing so, regional carriers that are owned by or have exclusive service

agreements with a major airline are identified as being part of that major airline. This procedure

is similar to Aguirregabiria and Ho (2012). Table A-5 shows how individual carriers are organized

into airline groups. The last group contains five regional carriers that operate under the name of

at least two major carriers, so their service contracts are not exclusive at the national level. In

these cases, the major carrier is the ticketing carrier observed in the data; I use this information to

assign a flight to its respective major airline group.

Jet fuel use. There are four steps in calculating the average fuel use per available seat in a route.

First, I use Table T-100 in the Form 41 Traffic Database (BTS, 2018) to obtain the total departures

performed and available seats by aircraft model, airline, and segment. This information allows me

to calculate capacity-based use shares of each aircraft model.

Second, I calculate the total jet fuel burn for each aircraft model and stage length (segment

distance) using the ICAO Fuel Consumption Table in Appendix C of the ICAO Carbon Emissions

Calculator Methodology v.11 (ICAO, 2018). Matching these data requires a few conversions. Table

T-100 identifies aircraft models with DOT codes instead of the standard IATA Designator Codes

used in ICAO’s table; I manually match the 44 aircraft models in (the subset of) T-100 to IATA

Designator Codes. Moreover, ICAO’s table provides total fuel burn in kilograms for stage lengths
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in nautical miles (nm). I convert jet fuel mass to volume using the reference density of 820 kg/m3 at

15 ◦C—approximately 0.217 kg/gallon at 60 ◦F—for Jet Fuel A, the standard used in US aviation

(NREL, 2001). Also, one nautical mile corresponds to 1.15078 miles. Total fuel burn is tabulated at

values of 125, 250, 500, 750, 1000, and subsequent increments of 500 nm up to 8500 nm, depending

on the range of the model. I use linear interpolation to calculate fuel burn between tabulated stage

lengths.

Figure A-3 illustrates the importance of factoring stage lengths instead of relying on average

fuel efficiency by aircraft model. This figure shows how fuel burn per available seat-mile decreases

with increased distance flown for the eight most used models.A-1 The “hockey stick” shape of

efficiency curves represents the fact that taking off and climbing consume a substantial fraction

of the fuel allocated to a flight. Since the cruising stage is more fuel efficient, longer flights burn

less fuel per mile on average. ICAO’s fuel burn data are representative of the average conditions

in which these aircraft models are used in industry. Actual fuel consumption in a given trip—

information not publicly available—varies by weight load, flight plan, weather conditions, and

other factors. Nevertheless, passenger occupation rate, or load factor, has a small effect on fuel

burn, as passengers and baggage typically account for only 15% of the take-off weight (Borenstein

& Rose, 2014).

Third, I calculate the average fuel use for each segment, airline, and quarter. The fuel use of an

aircraft model in a segment is the total fuel burn, calculated in the previous step, divided by the

average number of seats available for that model and airline. I allow the number of seats to vary by

airline in order to accommodate different seat configurations. Then, for each segment and airline

in a quarter, I calculate average fuel efficiency across aircraft models used (if the airline used more

than one), weighting each model by the capacity-based use share in that quarter.

Fourth and finally, I calculate the average fuel use per available seat in a product (i.e., by route,

airline, and quarter) by summing the average fuel use of each segment in a route for that airline

and quarter.

Jet fuel expenditure. Jet fuel prices are gathered from the US Energy Information Adminis-

tration (EIA, 2018). I use average end-user sales prices by quarter and region. Regions are based

on the Petroleum Administration for Defense Districts (PADD). The data cover all five districts

A-1The number of available seats of an aircraft model varies by plane, with some airlines using more dense configu-
rations. The calculation in this graph uses the average number of seats across all planes.
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(and sub-districts): West Coast, Rocky Mountain, Gulf Coast, Midwest, and East Coast. The

East Coast PADD has three sub-districts: New England, Central Atlantic, and Lower Atlantic.

End-user sales prices include delivery costs, which capture relevant variations in fuel prices across

the US. Despite this spatial variation, end-user sales prices closely track changes in spot prices, as

illustrated in Figure A-4, panel (a). Panel (b) in this Figure shows the variation of end-user sales

prices across regions and compares it with spot prices.

To calculate jet fuel expenditure per available seat, I multiply the average jet fuel use in each

segment by its respective jet fuel price. The price assigned to each segment corresponds to the

PADD where the departing airport is located. Then, for each product, I sum fuel expenditures of

all the segments of a product’s route.

D Additional results on tax substitution

This appendix presents further information relative to the effects of replacing the existing sales tax

with a revenue-neutral carbon tax. Figure A-5 displays the distribution of key characteristics of

flights in the baseline (before any tax changes) in each of the carbon-intensity quintiles.

Panels (a) and (b) in Figure A-5 illustrate the crucial heterogeneity in products across quintiles:

not surprisingly, higher emissions per passenger on average correspond to longer flights. Higher

fuel costs for longer flights generally reflect higher pre-tax prices. However, a substantial share of

the flights in each quintile can be found in the price range of $250–500. Hence, these two panels

provide further insights into the distribution of implied taxes depicted in panel (a) of Figure 3: the

long right tail of implied taxes in the 1st and 2nd quintiles correspond to expensive but relatively

short flights.

In contrast, panels (c) and (d) in Figure A-5 show that differences in baseline markups or quality

are not relevant determinants in the heterogeneity of price responses. The distribution of markups

varies little across the quintiles 1 through 4; the distribution of the 5th quintile, however, shows a

slightly higher share of flights in the range of lower markups. Panel (d) shows the normalized distri-

bution of XD
k β̂

D—the estimated mean utility of product characteristics, which can be interpreted

as an index of product quality. We note that the dispersion in quality increases with the quintile,

but no consistent differences in mean quality exist. The minor exception is again the 5th quintile:

the mean index for quintiles 1 to 4 is between -0.7 and 0.7, but 0.35 for quintile 5. Nevertheless,
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these differences are relatively small and not sufficient to drive the results reported in Section 7.3.

E Market-specific marginal abatement costs

The estimated value of $211/ton CO2 corresponds to the marginal aggregate abatement cost based

on a uniform carbon tax applied to all markets. Nevertheless, market power and ticket prices vary

across markets, so tax wedges and abatement costs are heterogeneous. Figure A-6 illustrates the

distribution of baseline MACs. Panel (a) in this Figure displays a histogram of the abatement

costs per market; panel (b) shows cumulative distributions for the case where markets have equal

weights (unweighted) and for the case where markets are weighted by their emissions. These graphs

confirm the intuition that while existing distortions vary substantially, MACs are high even among

the markets with the lowest abatement costs: the minimum MAC is $107/ton CO2. Thus, under

the benchmark SCC of $50/ton CO2, there are no markets where a positive carbon tax would

increase welfare.

The heterogeneity in costs also indicates inefficiencies arising from the use of a uniform carbon

tax, as indicated in Section 3.4. Even though the second-best uniform tax of $107/ton CO2 (under

a high SCC) improves aggregate welfare, it does so by taxing markets where the MAC is above

the SCC of $300—at the baseline, about a quarter of the markets representing 23% of emissions

have MACs greater than $300. Conversely, this uniform tax also undertaxes markets with low

abatement costs. Nevertheless, market-specific carbon taxes would be difficult to implement in

practice, especially considering that the optimal levels are based on heterogeneous market power.

Further examination of the distribution of MACs across markets indicates that emissions with

lower abatement costs are mostly from large markets connecting dense urban areas, where com-

petition leads to lower markups, fares, and, thus, tax wedges. Figure A-7 shows a histogram of

MACs for each market size quartile, with the first quartile containing the smallest markets. This

figure indicates that the dispersion of market MACs increases with market size: the proportion of

markets with MAC below $300/ton CO2 is higher in the third and fourth quartiles.

Though the first quartile has a higher count of markets with low MAC, these markets generate

a small fraction of the emissions in the sector. Since carbon damages are proportional to total

emissions, it is also important to evaluate the distribution of MACs over emissions. To do so, I

weigh each market by its emissions. Figure A-8 compares the unweighted and emission-weighted
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distributions of each market size quartile. Panel (a) in this figure reproduces the patterns observed

in Figure A-7, with the lowest quartiles having a larger proportion of markets with MACs below

$300. Panel (b) in Figure A-8 paints a similar picture with two exceptions. First, we observe that

the distribution of the second quartile approaches those of higher quantiles, especially in the range

of $200 and above. Second, the fourth quartile stands out in the low MAC range, indicating that a

disproportional amount of the emissions is in markets with low distortions. This could reflect the

fact that more competition in markets serving large urban areas tends to drive markups and prices

down, thus decreasing the distortions that contribute to a higher MAC.

F Bounding marginal abatement costs with input substitution

The calculation of the effects of a marginal increase in the carbon tax hold constant the fuel burn per

available seat. This assumption is a reasonable approximation for short-run impacts because there

are limited options for fuel consumption adjustments, especially in short and medium-haul domestic

flights. However, substantial fuel cost shocks can induce adjustments in aircraft configuration and

cruise speed reductions—thus trading off fuel for travel time-based costs, such as labor.

This appendix extends the analysis of marginal effects in Section 7.1 to account for limited

substitution of inputs as an exercise to provide lower bounds for the marginal abatement costs. To

do so, I extend the model described in Appendix A.2 to allow for input substitution by assuming

that the production follows a Constant Elasticity of Substitution (CES) function. Then, I estimate

the elasticity of substitution between fuel and non-fuel inputs using carrier costs reported in the

Form P-5.2 dataset. Using this elasticity, I re-calculate marginal effects and compare them with

the those shown in the main body of the paper.

F.1 Extending the model

This extension maintains the definition of a product as the combination of an airline, a route, and

a quarter. In the main model used in this paper, the fuel amount used to supply an available seat

for a given product is held constant. This assumption can be interpreted as a Leontief production

function, where fuel cannot be substituted with other inputs. This extension will assume instead

that the production function is a CES function, where fuel and non-fuel inputs can be substituted.

Importantly, this derivation assumes that non-fuel inputs do not lead to any emissions.
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The extended production function is given by

qk = Ak

(
akf

σ−1
σ

k + (1− ak) o
σ−1
σ

k

) σ
σ−1

, (A-26)

where qk is the quantity of available seats in product k, fk is the fuel use in product k, ok is a

composite of non-fuel inputs, σ is the elasticity of substitution between fuel and non-fuel inputs, and

Ak and ak are CES parameters. The cost of ok is normalized to 1 throughout, so the substitution

captures the shift in cost shares. Moreover, it can be shown that share parameters can be calibrated

so that they match the initial cost shares of fuel and non-fuel inputs: ak = ωkfk
ωkfk+ok

.

From cost minimization, we obtain that the marginal unit cost is constant and given by

ck =
1

Ak

(
aσkω

1−σ
k + (1− ak)

σ) 1
1−σ . (A-27)

Moreover, a marginal change in the tax leads to a marginal change in unit costs proportional to fuel

use: dck
dτ = fk. The marginal effects on prices and quantities, thus, remain identical to the baseline

case. However, there will be an additional component for the marginal change in emissions due to

a reduction in f ; marginal effects on tax revenues, damages, welfare, and MAC will be different. It

can be shown that the marginal change in fuel use following a marginal change in the tax is given

by
dfk
dτ

=
dfk
dωk

= −σ fk
ωk

(1− ak) . (A-28)

Sufficient statistics approach. As discussed in Appendix A.1, this approach aggregates prod-

ucts in a given market to Qmt. Given the fuel substitution characterized above, it can be shown

that marginal changes to tax revenue are now given by

dTmt

dτ
= Qmt

{
(1 + r) fmt + (τfmt + rp̃mt)

ηmt

ωmt
ε

}
− τσ

Zmt

ωmt
Qmt, (A-29)

where Zmt =
∑Km

k=1 sk|gfk (1− ak) and the rightmost term now accounts for fuel tax revenue changes

due to input substitution.

Similarly, marginal changes in damages are given by

dΦmt

dτ
= ϕ

[
ε
ηmt

ωmt
fmQm − σ

Zmt

ωmt
Qm

]
, (A-30)
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where the rightmost term captures reduced damages induced by lower fuel intensity.

The subsequent calculation of net welfare effects follows the same steps as in the baseline case.

The resulting expression for the marginal abatement cost in a market is then given by

MACmt (τ0) =
1

h

[
τ +

µmt + rp̃mt

fm + σZmt
ηmt

]
, (A-31)

from where we note that increasing σ decreases the marginal abatement cost. However, the intensity

of this reduction depends the ratio Zmt
ηmt

.

Structural approach. The structural approach has two main differences relative to the baseline

case. First, non-marginal cost adjustments will accoung for the lower fuel use per available seat.

Second, since this extension captures fuel input substitution and its impact on marginal costs, there

will be no parameter ρ representing how fuel expenditures map into costs. The derivation for this

part use exact algebra notation (Dekle, Eaton, & Kortum, 2008), where x̂ ≡ xpost/xpre represents

the ratio of the post to pre-shock values of some variable x.

An increase in the jet fuel tax from τ0 to τ1 can be represented as ω̂k = (wk + τ1) / (wk + τ0).

Then, it can be shown that the marginal cost adjust as follows

ĉk =
(
1 + ak

(
ω̂k

1−σ − 1
)) 1

1−σ . (A-32)

Moreove, the change is fuel use is given by

f̂k =

(
ĉk
ω̂k

)σ

. (A-33)

Equations A-32 and A-33 are sufficient to simulate the equilibria with fuel use adjustment under

different levels of the tax; the calculation of the marginal effects on welfare and the MAC follows

as in the baseline.

F.2 Estimating the elasticity of fuel substitution

To estimate the elasticity of substitution, I use the dataset of Form 41 Schedule T-2, which reports

quarterly traffic and fuel use, among other variables, by aircraft model and airline. This allows me

to calculate fuel use per available seat-mile for each aircraft model and airline. For this estimation,
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the period of analysis is extended to include all quarters from 2014 to 2018. Table A-6 shows

summary statistics for the estimation dataset.

The estimation of the elasticity of substitution is guided by equation (A-28), with three esti-

mating equations considered: linear, log-log, and the CES-implied formula. The specifications are

as follows:

fk = ψlinearωk + νp + νi + εk, (A-34)

log (fk) = ψlog log (ωk) + νp + νi + εk, (A-35)

log (fk) = σ log (fk)× (1− ak) + νp + νi + εk, (A-36)

where fk is fuel use per hundred available seat-mile, ωk is the fuel cost in dollars per gallon, νp and νi

are aircraft model and airline fixed effects, and εk is an error term. The estimated coefficients of the

linear (ψlinear) or log-log (ψlog) specifications can be used to calculate the implied mean elasticity

of substitution using equation (A-28) and mean observed values of (1− ak) fk/ωk or (1− ak). The

coefficient estimated in the CES-implied formula directly maps to σ.

The identification of the ψlinear and ψlog relies on the exogeneity of jet fuel prices, which was

discussed in the cost specification in Section 6.2. The identification of the CES-implied formula is

more challenging because the share parameter ak is a function of both fuel and non-fuel input prices.

Nevertheless, the results are informative about the plausible range of the elasticity of substitution.

Table A-7 shows the estimates of the elasticity of substitution for the three specifications. The

linear and log-log estimates imply a low elasticity of substitution, while the CES-implied estimate

suggests a slightly higher value. Despite their differences, all three specifications point to the

conclusion that the elasticity of substitution is relatively low. This result is consistent with the

observation that there are limited alternatives to reduce fuel use in the short run (Belobaba, Odoni,

& Barnhart, 2015).

F.3 Marginal abatement costs and welfare with input substitution

The expressions derived for the extended model and the empirical estimates of σ in the previous

subsections are used to calculate the effects of a marginal increase in the carbon tax. The goal of

this exercise is to establish reasonable bounds for these effects if fuel substitution were considered.

In that spirit, the following quantification adopts two alternative levels for σ: 0.04 and 0.08, which
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are approximatelly the lower and upper bounds of the 95% confidence interval of the higher, CES-

implied estimate.

Table A-8 shows the results of raising the jet fuel tax by 1 cent/gallon under different levels of

fuel substitutability. For the sufficient statistics approach, increasing σ leads to the same aggregate

effects in prices and traffic, but with reduced emissions. As a consequence, the MAC and the

wedges are smaller. In the case of a higher substitutability (σ = 0.08), the MAC is about 13%

lower than the baseline estimate; at ≈ $212, the MAC gets closer to the value obtained for the

baseline structural approach.

The structural approach yields similar results. It is important to note, however, that the case

of σ = 0 here is not the same as the baseline because the extension version does not include the

ρ parameter mapping fuel expenditures to implied marginal costs. Therefore, the effective pass-

through in this case is higher than the baseline case without input substitution, and we observe

more pronounced responses in prices and traffic. Nevertheless, the resulting MAC for the case of

σ = 0 here is very similar to the baseline estimates. Increasing σ also leads to reductions in the

MAC and wedges. In particular, the higher sigma results in a MAC that is about 7% lower that

the baseline estimate or the σ = 0 cases.

These results above are consistent with the intuition that input substitution allows for reduced

emission intensity, which translates into a lower abatement cost. However, using empirical estimates

of the elasticity of substitution between fuel and non-fuel inputs, the magnitude of the reduction in

MAC is relatively small. These bounding exercises indicate that the main results of the paper are

a reasonable approximation of the effects of a carbon tax increase, even when input substitution is

considered.
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Figure A-1: Passenger traffic in cities and metro areas included in the data set.
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Source of data: US Bureau of Transportation Statistics. Note: traffic is measured in passengers enplaned in domestic
flights from all airports within a city or metro area.

Figure A-2: Passenger traffic between cities and metro areas.
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Notes: each segment connects only the endpoints (city or metro area) of a round trip, regardless of any connections
in between. Traffic measures the number of passengers enplaned in round-trip flights between any airport at the
endpoints in either direction.
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Figure A-3: Fuel efficiency by stage length for the aircraft models most used.

Notes: Fuel efficiency is measured in gallons of jet fuel per 1000 available seat-miles. The eight models shown in this
graph correspond to those that offered the highest aggregate capacity (in available seat-miles) in 2018.

Figure A-4: Jet fuel and crude oil prices.

(a) Jet fuel and crude oil spot prices.

(b) Jet fuel spot and regional end-user sales prices.

Notes: Spot prices are for US Gulf Coast Kerosene-Type Jet Fuel and Crude Oil WTI. Regional (PADD) prices are
average end-user sales prices by quarter. Source: US Energy Information Administration.
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Figure A-5: Baseline characteristics of flights by carbon intensity quintiles.

(a) (b)

(c) (d)

Notes: Curves show kernel densities for each carbon intensity quintile. Distributions are weighted by total emissions,
so each quintile has approximately the same baseline aggregate emissions. Quintile cut-offs are approximately 320,
410, 530, and 710 Kg of CO2 per passenger.
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Figure A-6: Distribution of baseline marginal abatement costs (MACs) across markets.

(a) Histogram. (b) Cumulative distribution.

Notes: these calculations are based on the estimated model, as described in section 6.2. In panel (b), the emission-
weighted distribution weights each market by its total emissions. This can be interpreted as the distribution of MACs
with respect to total emissions, so that each point along the line indicates the share of emissions with a MAC at or
below that level. In the unweighted distribution, shares are relative to the total number of markets.
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Figure A-7: Histograms of baseline market-specific marginal abatement costs (MAC) for each
market size quartile.

Notes: marginal abatement costs are defined in section 3.4. Smallest market sizes are in the first quartile.
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Figure A-8: Cumulative distributions of baseline market-specific marginal abatement costs (MAC)
for each market size quartile.

(a) Unweighted distribution (b) Emission-weighted distribution

Notes: marginal abatement costs are defined in section 3.4. Smallest market sizes are in the first quartile. In panel
(a), unweighted shares are relative to the total number of markets. In panel (b), emission-weighted distributions
weight each market by its total emissions. These can be interpreted as the distributions of MACs with respect to
total emissions, so that each point along the line indicates the share of emissions with a MAC at or below that level.
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Table A-1: Estimates of demand parameters using 2SLS.

ln(sk/s0)

Price ($100) [−α] −0.800

(0.110)

ln(share within nest) [1-λ] 0.366

(0.050)

Departures per week 0.036

(0.002)

Number of stops −0.848

(0.073)

Market distance (100 mi.) 0.077

(0.015)

Market distance squared 0.0001

(0.0003)

Connection extra distance (100 mi.) −0.089

(0.009)

Connection extra distance squared 0.004

(0.001)

Share of delayed departures −0.603

(0.094)

Destinations from origin 0.011

(0.002)

Fixed effects

Airline Yes

Origin airport-by-quarter Yes

Destination airport-by-quarter Yes

Observations 267,967

Note: standard errors, shown in parentheses, are
clustered by non-directional city pairs (markets in
opposite directions are clustered together).
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Table A-2: First stage regressions of the demand model using 2SLS.

Dependent variable:

Price ln(share within nest) Departures per week

Number of stops 0.036 −1.179 −0.030

(0.022) (0.022) (0.206)

Market distance (100 mi.) 0.068 0.016 −0.970

(0.010) (0.013) (0.084)

Market distance squared 0.001 0.004 0.031

(0.0002) (0.0004) (0.002)

Connection extra distance −0.024 −0.152 −0.920

(0.005) (0.005) (0.053)

Connection extra distance squared 0.001 0.010 0.076

(0.0003) (0.0004) (0.004)

Share of delayed departures −0.383 −0.416 −6.059

(0.094) (0.107) (0.798)

Destinations from origin 0.018 −0.010 −0.086

(0.001) (0.001) (0.006)

Airlines in market −0.060 −0.129 −0.629

(0.015) (0.022) (0.144)

Rivals’ products in market −0.0005 −0.002 0.008

(0.0002) (0.0004) (0.002)

Rivals’ % of nonstop flights −0.602 −0.222 7.351

(0.077) (0.225) (1.266)

Potential legacy entrants 0.074 −0.049 0.006

(0.031) (0.062) (0.428)

Potential LCC entrants −0.029 0.058 −0.857

(0.012) (0.017) (0.113)

Fuel expenditure 0.003 −0.015 −0.066

(0.001) (0.001) (0.010)

Compl. segment density 0.007 0.007 0.320

(0.0004) (0.0003) (0.005)

Fixed effects

Airline Yes Yes Yes

Origin airport-by-quarter Yes Yes Yes

Destination airport-by-quarter Yes Yes Yes

Observations 267,967 267,967 267,967

F-statistic 317 957 353

Conditional F-statistic 23 62 62

Notes: standard errors, shown in parentheses, are clustered by non-directional city pairs (markets
in opposite directions are clustered together). The conditional F-statistic is calculated following
Sanderson and Windmeijer (2016).
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Table A-3: Estimates of supply parameters using 2SLS.

ĉk

Fuel expenditure/avail. seat [ρ] 0.669

(0.161)

Total ramp-to-ramp time (h) 0.156

(0.017)

× American −0.038

(0.007)

× Delta 0.049

(0.008)

× United −0.014

(0.008)

× Alaska −0.020

(0.033)

× JetBlue −0.013

(0.010)

× Other low-cost −0.124

(0.007)

Fixed effects

Quarter Yes

Each route airport-by-airline Yes

Observations 267,967

Note: standard errors, shown in parenthe-
ses, are clustered by non-directional city
pairs (markets in opposite directions are
clustered together).
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Table A-4: Estimates of demand parameters under alternative specifications.

Dependent variable:

ln(sk/s0)

(1) (2) (3) (4) (5)

OLS 2SLS 2SLS 2SLS 2SLS

No FE Log prices Airline nests Flight type nests

Price ($100) [−α] 0.008 −0.411 0.101 −0.152

(0.0004) (0.085) (0.082) (0.025)

ln(Price) −2.920

(0.453)

ln(share within nest) [1-λ] −0.040 0.443 0.381 0.411 1.075

(0.002) (0.021) (0.041) (0.034) (0.017)

Departures per week 0.790 0.021 0.032 0.028 −0.001

(0.008) (0.001) (0.002) (0.002) (0.001)

Number of stops −0.346 −0.703 −0.803 −1.187 −0.310

(0.014) (0.031) (0.061) (0.018) (0.016)

Market distance (100 mi.) −0.007 0.037 0.067 0.008 0.003

(0.009) (0.013) (0.014) (0.009) (0.003)

Market distance squared −0.002 −0.001 −0.0003 −0.001 0.001

(0.0004) (0.0003) (0.0003) (0.0002) (0.0001)

Conn. extra distance (100 mi.) −0.027 −0.070 −0.093 −0.072 −0.009

(0.002) (0.005) (0.007) (0.007) (0.002)

Conn. extra distance squared 0.001 0.003 0.004 0.001 0.001

(0.0001) (0.0003) (0.0005) (0.001) (0.0001)

Share of delayed departures −0.379 −0.799 −0.522 −0.682 0.176

(0.054) (0.079) (0.088) (0.075) (0.027)

Destinations from origin −0.001 −0.002 0.007 0.009 0.0001

(0.0002) (0.001) (0.002) (0.002) (0.0005)

Fixed effects

Airline Yes Yes Yes Yes Yes

Origin airport-by-quarter Yes No Yes Yes Yes

Destination airport-by-quarter Yes No Yes Yes Yes

Nesting All flights All flights All flights By airline Stop vs. nonstop

Observations 267,967 267,967 267,967 267,967 267,967

Note: standard errors, shown in parentheses, are clustered by non-directional city pairs (markets in opposite
directions are clustered together).
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Table A-5: Airline groups and types in the dataset.

Carrier name (code) Airline group Type of airline

American Airlines Inc. (AA)

American LegacyPSA Airlines Inc. (16, OH)

Envoy Air (MQ)

Delta Air Lines Inc. (DL)
Delta Legacy

Endeavor Air Inc. (9E)

United Air Lines Inc. (UA)

United LegacyExpressJet Airlines LLC (EV)

Island Air Hawaii (WP)

Air Wisconsin Airlines Corp (ZW)

Alaska Airlines Inc. (AS)
Alaska Mixed

Horizon Air (QX)

Southwest Airlines Co. (SW) Southwest Low-cost

JetBlue Airways (B6) JetBlue Low-cost

Frontier Airlines Inc. (F9) Frontier Low-cost

Allegiant Air (G4) Allegiant Low-cost

Spirit Air Lines (NK) Spirit Low-cost

Sun Country Airlines (SY) Sun Country Low-cost

GoJet Airlines (G7)
American, Delta, or United
(varies by market)

Regional partnersCompass Airlines (CP)

SkyWest Airlines Inc. (OO)

Mesa Airlines Inc. (YV)

Republic Airline (YX)

Table A-6: Summary statistics for the estimation of the elasticity of
substitution.

Mean St. Dev. Min Median Max

Fuel use (gallons/100 ASM) 1.716 0.519 0.897 1.590 4.958

Fuel spot price ($/gallon) 1.787 0.529 0.991 1.630 2.925

Observations 1,634

Time periods (quarter) 20

Airlines 14

Aircraft models 43
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Table A-7: Estimates of the elasticity of substitution between fuel and non-fuel inputs.

Dependent variable:

Fuel use log(Fuel use)

(1) (2) (3)

Linear Log-log CES implied

Spot price −0.013

(0.008)

log(Spot price) −0.013

(0.007)

log(Spot price) × (1 - Fuel cost share) −0.060

(0.012)

Implied elasticity [σ] 0.008 0.020 0.060

Fixed effects

Aircraft model Yes Yes Yes

Airline Yes Yes Yes

Observations 1,634 1,634 1,470

R2 0.909 0.918 0.916

Notes: Standard errors are shown in parentheses. Fuel use is measured in gallons
per hundred available seat-miles; fuel spot prices are in dollars per gallon.

Table A-8: Effects of raising the jet fuel tax by 1 cent/gallon with input substitution.

Sufficient statistics Structural model

Elasticity of substitution (σ) 0 0.04 0.08 0 0.04 0.08

Marginal costs ($/tCO2)

Marginal abatement cost (MAC) 242.43 226.12 211.84 210.94 203.09 195.63

Markup wedge 185.12 172.45 161.39 154.29 146.77 141.38

Sales tax wedge 54.10 50.39 47.16 53.37 53.16 51.21

Aggregate market changes

Mean ticket price +0.09% +0.09% +0.09% +0.09% +0.08% +0.08%

Passengers -0.16% -0.16% -0.16% -0.28% -0.27% -0.27%

Emissions -0.17% -0.18% -0.20% -0.35% -0.35% -0.36%

Welfare changes (million $)
Short-run private surplus (SRPS) -23.84 -23.87 -23.88 -42.20 -40.57 -40.57

Social welfare, SCC of: $50 -18.93 -18.59 -18.25 -32.28 -28.55 -28.20

$200 -4.18 -2.76 -1.34 -2.27 +1.41 +2.91

$300 +5.65 +7.80 +9.94 +17.74 +21.39 +23.64

Notes: The baseline tax is 4.4 cents/gallon or, equivalently, $3.28/ton CO2.
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